Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Topological order and absence of band insulators at integer filling in non-symmorphic crystals

Abstract

Band insulators appear in a crystalline system only when the filling—the number of electrons per unit cell and spin projection—is an integer. At fractional filling, an insulating phase that preserves all symmetries is a Mott insulator; that is, it is either gapless or, if gapped, exhibits fractionalized excitations and topological order. We raise the inverse question—at an integer filling is a band insulator always possible? Here we show that lattice symmetries may forbid a band insulator even at certain integer fillings, if the crystal is non-symmorphic—a property shared by most three-dimensional crystal structures. In these cases, one may infer the existence of topological order if the ground state is gapped and fully symmetric. This is demonstrated using a non-perturbative flux-threading argument, which has immediate applications to quantum spin systems and bosonic insulators in addition to electronic band structures in the absence of spin–orbit interactions.

This is a preview of subscription content, access via your institution

Access options

Figure 1: Flux threading on a non-symmorphic lattice.
Figure 2: Band structure on hcp lattices.
Figure 3: Other examples of non-symmorphic lattices.

Similar content being viewed by others

References

  1. Hastings, M. B. Lieb–Schultz–Mattis in higher dimensions. Phys. Rev. B 69, 104431 (2004).

    Article  ADS  Google Scholar 

  2. Hastings, M. B. Sufficient conditions for topological order in insulators. Europhys. Lett. 70, 824–830 (2005).

    Article  ADS  Google Scholar 

  3. Oshikawa, M. Commensurability, excitation gap, and topology in quantum many-particle systems on a periodic lattice. Phys. Rev. Lett. 84, 1535–1538 (2000).

    Article  ADS  Google Scholar 

  4. Lieb, E., Schultz, T. & Mattis, D. Two soluble models of an antiferromagnetic chain. Ann. Phys. 16, 407–466 (1961).

    Article  ADS  MathSciNet  Google Scholar 

  5. Altman, E. & Auerbach, A. Haldane gap and fractional oscillations in gated Josephson arrays. Phys. Rev. Lett. 81, 4484–4487 (1998).

    Article  ADS  Google Scholar 

  6. Oshikawa, M., Yamanaka, M. & Affleck, I. Magnetization plateaus in spin chains: Haldane gap for half-integer spins. Phys. Rev. Lett. 78, 1984–1987 (1997).

    Article  ADS  Google Scholar 

  7. Yao, H. & Kivelson, S. A. Fragile Mott insulators. Phys. Rev. Lett. 105, 166402 (2010).

    Article  ADS  Google Scholar 

  8. Kimchi, I., Parameswaran, S. A., Turner, A. M. & Vishwanath, A. Featureless and non-fractionalized Bose insulator on the honeycomb lattice at 1/2 site-filling. Preprint at http://arxiv.org/abs/1207.0498 (2012).

  9. Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987).

    Article  ADS  Google Scholar 

  10. John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987).

    Article  ADS  Google Scholar 

  11. Herring, C. Character tables for two space groups. J. Frankl. Inst. 233, 525–543 (1942).

    Article  MathSciNet  Google Scholar 

  12. Herring, C. Effect of time-reversal symmetry on energy bands of crystals. Phys. Rev. 52, 361–365 (1937).

    Article  ADS  Google Scholar 

  13. König, A. & Mermin, N. D. Electronic level degeneracy in nonsymmorphic periodic or aperiodic crystals. Phys. Rev. B 56, 13607–13610 (1997).

    Article  ADS  Google Scholar 

  14. Michel, L. & Zak, J. Connectivity of energy bands in crystals. Phys. Rev. B 59, 5998–6001 (1999).

    Article  ADS  Google Scholar 

  15. Shastry, B. S. & Sutherland, B. Exact ground state of a quantum-mechanical antiferromagnet. Physica 108B, 1069–1070 (1981).

    Google Scholar 

  16. Sebastian, S. E. et al. Fractalization drives crystalline states in a frustrated spin system. Proc. Natl Acad. Sci. USA 105, 20157–20160 (2008).

    Article  ADS  Google Scholar 

  17. Jaime, M. et al. Magnetostriction and magnetic texture to 100.75 Tesla in frustrated SrCu2(BO3)2 . Proc. Natl Acad. Sci. USA 109, 12404–12407 (2012).

    Article  ADS  Google Scholar 

  18. König, A. & Mermin, N. D. Screw rotations and glide mirrors: Crystallography in Fourier space. Proc. Natl Acad. Sci. USA 96, 3502–3506 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  19. Oshikawa, M. Insulator, conductor, and commensurability: A topological approach. Phys. Rev. Lett. 90, 236401 (2003).

    Article  ADS  Google Scholar 

  20. Paramekanti, A. & Vishwanath, A. Extending Luttinger’s theorem to Z2 fractionalized phases of matter. Phys. Rev. B 70, 245118 (2004).

    Article  ADS  Google Scholar 

  21. Onizuka, K. et al. 1/3 magnetization plateau in SrCu2(BO3)2—stripe order of excited triplets. J. Phys. Soc. Jpn 69, 1016–1018 (2000).

    Article  ADS  Google Scholar 

  22. Kodama, K. et al. Magnetic superstructure in the two-dimensional quantum antiferromagnet SrCu2(BO3)2 . Science 298, 395–399 (2002).

    Article  ADS  Google Scholar 

  23. Abendschein, A. & Capponi, S. Effective theory of magnetization plateaux in the Shastry–Sutherland lattice. Phys. Rev. Lett. 101, 227201 (2008).

    Article  ADS  Google Scholar 

  24. Dorier, J., Schmidt, K. P. & Mila, F. Theory of magnetization plateaux in the Shastry–Sutherland model. Phys. Rev. Lett. 101, 250402 (2008).

    Article  ADS  Google Scholar 

  25. Momoi, T. & Totsuka, K. Magnetization plateaus of the Shastry–Sutherland model for SrCu2(BO3)2: Spin-density wave, supersolid, and bound states. Phys. Rev. B 62, 15067–15078 (2000).

    Article  ADS  Google Scholar 

  26. Balents, L., Fisher, M. P. A. & Girvin, S. M. Fractionalization in an easy-axis Kagome antiferromagnet. Phys. Rev. B 65, 224412–224419 (2002).

    Article  ADS  Google Scholar 

  27. Roy, R. Space group symmetries and low lying excitations of many-body systems at integer fillings. Preprint at http://arxiv.org/abs/1212.2944 (2012).

Download references

Acknowledgements

We thank I. Kimchi and D. Stamper-Kurn for collaboration on related work, R. Roy for many detailed conversations, M. Hermele, M. Oshikawa, S. Coh and M. Zaletel for stimulating discussions and M. Norman for valuable comments on the manuscript. This work is supported by the Simons Foundation (S.A.P. and A.V.) and by the National Science Foundation Grants No. 1066293 at the Aspen Center for Physics (S.A.P., D.P.A., A.V.), PHY11-25915 through the Frustrated Magnets programme at the Kavli Institute for Theoretical Physics (S.A.P., A.V.), DMR-1007028 (D.P.A.) and DMR-1206728 (A.V.).

Author information

Authors and Affiliations

Authors

Contributions

The research reported here emerged from lively discussions between the authors. All authors contributed to writing the manuscript.

Corresponding author

Correspondence to Ashvin Vishwanath.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 307 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parameswaran, S., Turner, A., Arovas, D. et al. Topological order and absence of band insulators at integer filling in non-symmorphic crystals. Nature Phys 9, 299–303 (2013). https://doi.org/10.1038/nphys2600

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2600

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing