Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Non-equilibrium glass transitions in driven and active matter


The glass transition, extensively studied in dense fluids, polymers or colloids, corresponds to a marked evolution of equilibrium transport coefficients on a modest change of control parameter, such as temperature or pressure. A similar phenomenology is found in many systems evolving far from equilibrium, such as driven granular media, active and living matter. Although many theories compete to describe the glass transition at thermal equilibrium, very little is understood far from equilibrium. Here, we solve the dynamics of a specific, yet representative, class of glass models in the presence of non-thermal driving forces and energy dissipation, and show that a dynamic arrest can take place in these non-equilibrium conditions. Whereas the location of the transition depends on the specifics of the driving mechanisms, important features of the glassy dynamics are insensitive to details, suggesting that an effective thermal dynamics generically emerges at long timescales in non-equilibrium systems close to dynamic arrest.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Slow dynamics with coloured dissipation and noise.
Figure 2: Effective temperatures near non-equilibrium glass transitions.

Similar content being viewed by others


  1. Marty, G. & Dauchot, O. Subdiffusion and cage effect in a sheared granular material. Phys. Rev. Lett. 94, 015701 (2005).

    Article  ADS  Google Scholar 

  2. Reis, P. M., Ingale, R. A. & Shattuck, M. D. Caging dynamics in a granular fluid. Phys. Rev. Lett. 98, 188301 (2007).

    Article  ADS  Google Scholar 

  3. Watanabe, K. & Tanaka, H. Direct observation of medium-range crystalline order in granular liquids near the glass transition. Phys. Rev. Lett. 100, 158002 (2008).

    Article  ADS  Google Scholar 

  4. Abate, A. R. & Durian, D. J. Approach to jamming in an air-fluidized granular bed. Phys. Rev. E 74, 031308 (2006).

    Article  ADS  Google Scholar 

  5. Kranz, T., Sperl, M. & Zippelius, A. Glass transition for driven granular fluids. Phys. Rev. Lett. 104, 225701 (2010).

    Article  ADS  Google Scholar 

  6. Palacci, J., Cottin-Bizonne, C., Ybert, C. & Bocquet, L. Sedimentation and effective temperature of active colloidal suspensions. Phys. Rev. Lett. 105, 088304 (2010).

    Article  ADS  Google Scholar 

  7. Theurkauff, I., Cottin-Bizonne, C., Palacci, J., Ybert, C. & Bocquet, L. Dynamic clustering in active colloidal suspensions with chemical signalling. Phys. Rev. Lett. 108, 268303 (2012).

    Article  ADS  Google Scholar 

  8. Deseigne, J., Dauchot, O. & Chaté, H. Collective motion of vibrated polar disks. Phys. Rev. Lett. 105, 135702 (2010).

    Article  Google Scholar 

  9. Angelini, T. E. et al. Glass-like dynamics of collective cell migration. Proc. Natl Acad. Sci. USA 108, 4714–4719 (2011).

    Article  ADS  Google Scholar 

  10. Petitjean, L. et al. Velocity fields in a collectively migrating epithelium. Biophys. J. 98, 1790–1800 (2010).

    Article  ADS  Google Scholar 

  11. Loi, D., Mossa, S. & Cugliandolo, L. F. Non-conservative forces and effective temperatures in active polymers. Soft Matter 7, 10193–10209 (2011).

    Article  ADS  Google Scholar 

  12. Loi, D., Mossa, S. & Cugliandolo, L. F. Effective temperature of active complex matter. Soft Matter 7, 3726–3729 (2011).

    Article  ADS  Google Scholar 

  13. Henkes, S., Fily, Y. & Marchetti, M. C. Active jamming: Self-propelled soft particles at high density. Phys. Rev. E 84, 040301(R) (2011).

    Article  ADS  Google Scholar 

  14. Bialké, J., Speck, T. & Löwen, H. Crystallization in a dense suspension of self-propelled particles. Phys. Rev. Lett. 108, 168301 (2012).

    Article  ADS  Google Scholar 

  15. Tailleur, J. & Cates, M. E. Statistical mechanics of interacting run-and-tumble bacteria. Phys. Rev. Lett. 100, 218103 (2008).

    Article  ADS  Google Scholar 

  16. Tailleur, J. & Cates, M. E. Sedimentation, trapping, and rectification of dilute bacteria. EPL 86, 60002 (2009).

    Article  ADS  Google Scholar 

  17. Marchetti, M. C. et al. Soft active matter. Preprint at (2012).

  18. Berthier, L. & Biroli, G. Theoretical perspective on the glass transition and amorphous materials. Rev. Mod. Phys. 83, 587–645 (2011).

    Article  ADS  Google Scholar 

  19. Wang, S. & Wolynes, P. G. Effective temperature and glassy dynamics of active matter. J. Chem. Phys. 135, 051101 (2011).

    Article  ADS  Google Scholar 

  20. Kirkpatrick, T. R. & Thirumalai, D. Dynamics of the structural glass transition and the p-spin interaction spin glass model. Phys. Rev. Lett. 58, 2091–2094 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  21. Kirkpatrick, T. R., Thirumalai, D. & Wolynes, P. G. Scaling concepts for the dynamics of viscous liquids near an ideal glassy state. Phys. Rev. A 40, 1045–1054 (1989).

    Article  ADS  Google Scholar 

  22. Prost, J., Joanny, J-F. & Parrondo, J. M. R. Generalized fluctuation–dissipation theorem for steady-state systems. Phys. Rev. Lett. 103, 090601 (2009).

    Article  ADS  Google Scholar 

  23. Bohec, P. et al. Probing active forces via a fluctuation–dissipation relation. Preprint at (2012).

  24. Ben-Isaac, E. et al. Effective temperature of red-blood-cell membrane fluctuations. Phys. Rev. Lett. 106, 238103 (2011).

    Article  ADS  Google Scholar 

  25. Gopinath, A., Hagan, M. F., Marchetti, M. C. & Baskaran, A. Dynamical self-regulation in self-propelled particle flows. Phys. Rev. E 85, 061903 (2012).

    Article  ADS  Google Scholar 

  26. Dammak, H., Chalopin, Y., Laroche, M., Hayoun, M. & Greffet, J-J. Quantum thermal bath for molecular dynamics simulation. Phys. Rev. Lett. 103, 190601 (2009).

    Article  ADS  Google Scholar 

  27. Ford, G. W., Lewis, J. T. & O’Connell, R. F. Quantum Langevin equation. Phys. Rev. A 37, 4419–4428 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  28. Cugliandolo, L. F. & Kurchan, J. A scenario for the dynamics in the small entropy production limit. J. Phys. Soc. Jpn 69 (Suppl. A), 247–256 (2000).

    Google Scholar 

  29. Berthier, L., Barrat, J-L. & Kurchan, J. A two-timescale, two-temperature scenario for nonlinear rheology. Phys. Rev. E 61, 5464–5472 (2000).

    Article  ADS  Google Scholar 

  30. Berthier, L., Cugliandolo, L. F. & Iguain, J. L. Glassy systems under time-dependent driving forces: Application to slow granular rheology. Phys. Rev. E 63, 051302 (2001).

    Article  ADS  Google Scholar 

  31. Götze, W. Complex Dynamics of Glass-Forming Liquids: A Mode-Coupling Theory (Oxford Univ. Press, 2008).

    Book  Google Scholar 

  32. Cugliandolo, L. F., Kurchan, J. & Peliti, L. Energy flow, partial equilibration, and effective temperatures in systems with slow dynamics. Phys. Rev. E 55, 3898–3914 (1997).

    Article  ADS  Google Scholar 

  33. Cugliandolo, L. F. & Kurchan, J. Analytical solution of the off-equilibrium dynamics of a long-range spin-glass model. Phys. Rev. Lett. 71, 173–176 (1993).

    Article  ADS  Google Scholar 

  34. Kurchan, J. Emergence of macroscopic temperatures in systems that are not thermodynamical microscopically: Towards a thermodynamical description of slow granular rheology. J. Phys. Condens. Matter 12, 6611–6617 (2000).

    Article  ADS  Google Scholar 

  35. Berthier, L., Holdsworth, P. C. W. & Sellitto, M. Nonequilibrium critical dynamics of the 2D XY model. J. Phys. A 34, 1805–1824 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  36. Cugliandolo, L. F., Grempel, D. R. & da Silva Santos, C. From second to first order transitions in a disordered quantum magnet. Phys. Rev. Lett. 85, 2589–2592 (2000).

    Article  ADS  Google Scholar 

  37. Chorin, A. J., Hald, O. H. & Kupferman, R. Optimal prediction and the Mori-Zwanzig representation of irreversible processes. Proc. Natl Acad. Sci. USA 97, 2968–2973 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  38. Brader, J. M. et al. Nonlinear response of dense colloidal suspensions under oscillatory shear: Mode-coupling theory and Fourier transform rheology experiments. Phys. Rev. E 82, 061401 (2010).

    Article  ADS  Google Scholar 

  39. Daniels, L. J., Haxton, T. K., Xu, N., Liu, A. J. & Durian, D. J. Temperature–pressure scaling for air-fluidized grains on approaches to Point J. Phys. Rev. Lett. 108, 138001 (2012).

    Article  ADS  Google Scholar 

Download references


We thank E. Bertin and O. Dauchot for discussions, and Groupement de Recherches PHENIX and ANR programme JAMVIB for partial financial support. The research leading to these results has received financial support from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC Grant agreement No 306845.

Author information

Authors and Affiliations



Both authors contributed equally to this work.

Corresponding author

Correspondence to Ludovic Berthier.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berthier, L., Kurchan, J. Non-equilibrium glass transitions in driven and active matter. Nature Phys 9, 310–314 (2013).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing