Article | Published:

Extreme-ultraviolet light generation in plasmonic nanostructures

Nature Physics volume 9, pages 304309 (2013) | Download Citation

Abstract

Strong-field phenomena in optical nanostructures have enabled the integration of nanophotonics, plasmonics and attosecond spectroscopy. For example, tremendous excitement was sparked by reports of nanostructure-enhanced high-harmonic generation. However, there is growing tension between the great promise held by extreme-ultraviolet and attosecond-pulse generation on the nanoscale, and the lack of successful implementations. Here, we address this problem in a study of highly nonlinear optical processes in gas-exposed bow-tie nanoantennas. We find multiphoton- and strong-field-induced atomic excitation and ionization resulting in extreme-ultraviolet fluorescence, as well as third- and fifth-harmonic generation intrinsic to the nanostructures. Identifying the intensity-dependent spectral fingerprint of atomic fluorescence, we gauge local plasmonic fields. Whereas intensities sufficient for high-harmonic generation are indeed achieved in the near-field, the nanoscopic volume is found to prohibit an efficient conversion. Our results illustrate opportunities and challenges in highly nonlinear plasmonics and its extension to the extreme ultraviolet.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & Engineering the optical response of plasmonic nanoantennas. Opt. Express 16, 9144–9154 (2008).

  2. 2.

    , , & Resonant field enhancements from metal nanoparticle arrays. Nano Lett. 4, 153–158 (2004).

  3. 3.

    et al. Nanomechanical control of an optical antenna. Nature Photon. 2, 230–233 (2008).

  4. 4.

    , , , & Gap-dependent optical coupling of single ‘bowtie’ nanoantennas resonant in the visible. Nano Lett. 4, 957–961 (2004).

  5. 5.

    , & Self-similar chain of metal nanospheres as an efficient nanolens. Phys. Rev. Lett. 91, 227402 (2003).

  6. 6.

    & Probing single molecules and single nanoparticles by surface-enhanced raman scattering. Science 275, 1102–1106 (1997).

  7. 7.

    , , & Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys. Rev. Lett. 97, 017402 (2006).

  8. 8.

    , , & Near-field second-harmonic generation induced by local field enhancement. Phys. Rev. Lett. 90, 013903 (2003).

  9. 9.

    , & Second-harmonic generation from nanoscopic metal tips: Symmetry selection rules for single asymmetric nanostructures. Phys. Rev. B 71, 201402 (2005).

  10. 10.

    , & Third-harmonic generation from single gold nanoparticles. Nano Lett. 5, 799–802 (2005).

  11. 11.

    et al. Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses. Phys. Rev. Lett. 103, 257404 (2009).

  12. 12.

    , & Continuum generation from single gold nanostructures through near-field mediated intraband transitions. Phys. Rev. B 68, 115433 (2003).

  13. 13.

    , , , & Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. Phys. Rev. Lett. 94, 017402 (2005).

  14. 14.

    , , , & Resonant optical antennas. Science 308, 1607–1609 (2005).

  15. 15.

    , , , & Localized multiphoton emission of femtosecond electron pulses from metal nanotips. Phys. Rev. Lett. 98, 043907 (2007).

  16. 16.

    et al. Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film. Nano Lett. 5, 1123–1127 (2005).

  17. 17.

    , , , & Tip-enhanced strong-field photoemission. Phys. Rev. Lett. 105, 147601 (2010).

  18. 18.

    , & Strong-field above-threshold photoemission from sharp metal tips. Phys. Rev. Lett. 105, 257601 (2010).

  19. 19.

    et al. Strong-field plasmonic electron acceleration with few-cycle, phase-stabilized laser pulses. Appl. Phys. Lett. 98, 111116 (2011).

  20. 20.

    et al. Intense few-cycle laser fields. Nature Phys. 7, 656–662 (2011).

  21. 21.

    et al. Strong field acceleration and steering of ultrafast electron pulses from a sharp metallic nanotip. Phys. Rev. Lett. 109, 244803 (2012).

  22. 22.

    et al. Field localization and rescattering in tip-enhanced photoemission. Annal. Phys. 525, L12–L18 (2013).

  23. 23.

    , & Attosecond control of electrons emitted from a nanoscale metal tip. Nature 475, 78–81 (2011).

  24. 24.

    , , & Field-driven photoemission from nanostructures quenches the quiver motion. Nature 483, 190–193 (2012).

  25. 25.

    et al. High-harmonic generation by resonant plasmon field enhancement. Nature 453, 757–760 (2008).

  26. 26.

    Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993).

  27. 27.

    & Intense few-cycle laser fields: Frontiers of nonlinear optics. Rev. Mod. Phys. 72, 545–591 (2000).

  28. 28.

    , & Theory of plasmon-enhanced high-order harmonic generation in the vicinity of metal nanostructures in noble gases. Phys. Rev. A 83, 043839 (2011).

  29. 29.

    , , & Polarization gating and circularly-polarized high harmonic generation using plasmonic enhancement in metal nanostructures. Opt. Express 19, 25346 (2011).

  30. 30.

    et al. Generation of isolated attosecond extreme ultraviolet pulses employing nanoplasmonic field enhancement: Optimization of coupled ellipsoids. New J. Phys. 13, 073010 (2011).

  31. 31.

    , , & Generation of a broadband XUV continuum in high-order-harmonic generation by spatially inhomogeneous fields. Phys. Rev. A 85, 013416 (2012).

  32. 32.

    et al. Plasmonic generation of ultrashort extreme-ultraviolet light pulses. Nature Photon. 5, 677–681 (2011).

  33. 33.

    , , & Nanostructure-enhanced atomic line emission. Nature 485, E1–E2 (2012).

  34. 34.

    et al. Reply. Nature 485, E2–E3 (2012).

  35. 35.

    et al. Comparison of femtosecond laser-induced damage on unstructured versus nano-structured Au-targets. Appl. Phys. A 104, 15–21 (2011).

  36. 36.

    High-harmonic generation with plasmonics: Feasible or unphysical? Ann. Phys. 525, A40–A42 (2013).

  37. 37.

    & Handbook of basic atomic spectroscopic data. J. Phys. Chem. Ref. Data 34, 1559–2259 (2005).

  38. 38.

    Surface properties probed by second-harmonic and sum-frequency generation. Nature 337, 519–525 (1989).

  39. 39.

    Third- and fifth-harmonic generation at the interfaces of glass and liquids. Phys. Rev. A 54, 5454–5457 (1996).

  40. 40.

    , , , & Tunneling ionization of noble gases in a high-intensity laser field. Phys. Rev. Lett. 63, 2212–2215 (1989).

  41. 41.

    et al. Atomic excitation during recollision-free ultrafast multi-electron tunnel ionization. Nature Phys. 2, 379–383 (2006).

  42. 42.

    et al. Geometry- and diffraction-independent ionization probabilities in intense laser fields: Probing atomic ionization mechanisms with effective intensity matching. Phys. Rev. A 73, 013407 (2006).

  43. 43.

    Radiance Lifetimes in the resonance series of Ar I. Phys. Rev. 175, 40–44 (1968).

  44. 44.

    et al. Colloidal quantum dots as probes of excitation field enhancement in photonic antennas. ACS Nano 4, 4571–4578 (2010).

  45. 45.

    , , & Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity. Phys. Rev. Lett. 94, 193201 (2005).

  46. 46.

    et al. A frequency comb in the extreme ultraviolet. Nature 436, 234–237 (2005).

  47. 47.

    , , , & High-order harmonic generation at 4 MHz as a light source for time-of-flight photoemission spectroscopy. Appl. Phys. Lett. 101, 071116 (2012).

  48. 48.

    , & Numerical characterization of high harmonic attosecond pulses. Phys. Rev. Lett. 88, 093905 (2002).

Download references

Acknowledgements

We thank Y. Liu and K. R. Siefermann for their helpful participation in preparatory studies, D. R. Solli and G. Herink for fruitful discussions, P. Simon, E. Lugovoy and V. Radisch for technical support and equipment, and Venteon Femtosecond Laser Technologies for providing a laser oscillator for initial experiments. Financial support by the Deutsche Forschungsgemeinschaft (DFG-ZUK 45/1 and SFB 755) is gratefully acknowledged.

Author information

Affiliations

  1. Institute of Materials Physics and Courant Research Center Nano-Spectroscopy and X-Ray Imaging, University of Göttingen, 37077 Göttingen, Germany

    • M. Sivis
    • , M. Duwe
    •  & C. Ropers
  2. Leibniz Institute of Surface Modification, University of Leipzig, 04318 Leipzig, Germany

    • B. Abel

Authors

  1. Search for M. Sivis in:

  2. Search for M. Duwe in:

  3. Search for B. Abel in:

  4. Search for C. Ropers in:

Contributions

M.S., B.A. and C.R. conceived and designed the experiment. M.S. and M.D. prepared the nanostructures and conducted the experiments. M.S., M.D. and C.R. analysed the measured data. M.S. and C.R. wrote the manuscript, with contributions from M.D. and B.A. All authors were involved in intensive discussions at all stages of the study.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to C. Ropers.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphys2590

Further reading