Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Extreme-ultraviolet light generation in plasmonic nanostructures

Abstract

Strong-field phenomena in optical nanostructures have enabled the integration of nanophotonics, plasmonics and attosecond spectroscopy. For example, tremendous excitement was sparked by reports of nanostructure-enhanced high-harmonic generation. However, there is growing tension between the great promise held by extreme-ultraviolet and attosecond-pulse generation on the nanoscale, and the lack of successful implementations. Here, we address this problem in a study of highly nonlinear optical processes in gas-exposed bow-tie nanoantennas. We find multiphoton- and strong-field-induced atomic excitation and ionization resulting in extreme-ultraviolet fluorescence, as well as third- and fifth-harmonic generation intrinsic to the nanostructures. Identifying the intensity-dependent spectral fingerprint of atomic fluorescence, we gauge local plasmonic fields. Whereas intensities sufficient for high-harmonic generation are indeed achieved in the near-field, the nanoscopic volume is found to prohibit an efficient conversion. Our results illustrate opportunities and challenges in highly nonlinear plasmonics and its extension to the extreme ultraviolet.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diagrams of the set-up and generation schemes.
Figure 2: Nanostructure-enhanced emission spectra.
Figure 3: Durability measurements.
Figure 4: Intensity-dependent reference measurements.

Similar content being viewed by others

References

  1. Fischer, H. & Martin, O. J. F. Engineering the optical response of plasmonic nanoantennas. Opt. Express 16, 9144–9154 (2008).

    Article  ADS  Google Scholar 

  2. Genov, D. A., Sarychev, A. K., Shalaev, V. M. & Wei, A. Resonant field enhancements from metal nanoparticle arrays. Nano Lett. 4, 153–158 (2004).

    Article  ADS  Google Scholar 

  3. Merlein, J. et al. Nanomechanical control of an optical antenna. Nature Photon. 2, 230–233 (2008).

    Article  Google Scholar 

  4. Fromm, D. P., Sundaramurthy, A., Schuck, P. J., Kino, G. & Moerner, W. E. Gap-dependent optical coupling of single ‘bowtie’ nanoantennas resonant in the visible. Nano Lett. 4, 957–961 (2004).

    Article  ADS  Google Scholar 

  5. Li, K., Stockman, M. I. & Bergman, D. J. Self-similar chain of metal nanospheres as an efficient nanolens. Phys. Rev. Lett. 91, 227402 (2003).

    Article  ADS  Google Scholar 

  6. Nie, S. & Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced raman scattering. Science 275, 1102–1106 (1997).

    Article  Google Scholar 

  7. Kühn, S., Ha˚kanson, U., Rogobete, L. & Sandoghdar, V. Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys. Rev. Lett. 97, 017402 (2006).

    Article  ADS  Google Scholar 

  8. Bouhelier, A., Beversluis, M., Hartschuh, A. & Novotny, L. Near-field second-harmonic generation induced by local field enhancement. Phys. Rev. Lett. 90, 013903 (2003).

    Article  ADS  Google Scholar 

  9. Neacsu, C., Reider, G. & Raschke, M. B. Second-harmonic generation from nanoscopic metal tips: Symmetry selection rules for single asymmetric nanostructures. Phys. Rev. B 71, 201402 (2005).

    Article  ADS  Google Scholar 

  10. Lippitz, M., Van Dijk, M. A. & Orrit, M. Third-harmonic generation from single gold nanoparticles. Nano Lett. 5, 799–802 (2005).

    Article  ADS  Google Scholar 

  11. Hanke, T. et al. Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses. Phys. Rev. Lett. 103, 257404 (2009).

    Article  ADS  Google Scholar 

  12. Beversluis, M., Bouhelier, A. & Novotny, L. Continuum generation from single gold nanostructures through near-field mediated intraband transitions. Phys. Rev. B 68, 115433 (2003).

    Article  ADS  Google Scholar 

  13. Schuck, P. J., Fromm, D. P., Sundaramurthy, A, Kino, G. S. & Moerner, W. E. Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. Phys. Rev. Lett. 94, 017402 (2005).

    Article  ADS  Google Scholar 

  14. Mühlschlegel, P., Eisler, H-J., Martin, O. J. F., Hecht, B. & Pohl, D. W. Resonant optical antennas. Science 308, 1607–1609 (2005).

    Article  ADS  Google Scholar 

  15. Ropers, C., Solli, D. R., Schulz, C. P., Lienau, C. & Elsaesser, T. Localized multiphoton emission of femtosecond electron pulses from metal nanotips. Phys. Rev. Lett. 98, 043907 (2007).

    Article  ADS  Google Scholar 

  16. Kubo, A. et al. Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film. Nano Lett. 5, 1123–1127 (2005).

    Article  ADS  Google Scholar 

  17. Bormann, R., Gulde, M., Weismann, A., Yalunin, S. & Ropers, C. Tip-enhanced strong-field photoemission. Phys. Rev. Lett. 105, 147601 (2010).

    Article  ADS  Google Scholar 

  18. Schenk, M., Krüger, M. & Hommelhoff, P. Strong-field above-threshold photoemission from sharp metal tips. Phys. Rev. Lett. 105, 257601 (2010).

    Article  ADS  Google Scholar 

  19. Rácz, P. et al. Strong-field plasmonic electron acceleration with few-cycle, phase-stabilized laser pulses. Appl. Phys. Lett. 98, 111116 (2011).

    Article  ADS  Google Scholar 

  20. Zherebtsov, S. et al. Intense few-cycle laser fields. Nature Phys. 7, 656–662 (2011).

    Article  ADS  Google Scholar 

  21. Park, D. J. et al. Strong field acceleration and steering of ultrafast electron pulses from a sharp metallic nanotip. Phys. Rev. Lett. 109, 244803 (2012).

    Article  ADS  Google Scholar 

  22. Yalunin, S. V. et al. Field localization and rescattering in tip-enhanced photoemission. Annal. Phys. 525, L12–L18 (2013).

    Article  Google Scholar 

  23. Krüger, M., Schenk, M. & Hommelhoff, P. Attosecond control of electrons emitted from a nanoscale metal tip. Nature 475, 78–81 (2011).

    Article  Google Scholar 

  24. Herink, G., Solli, D. R., Gulde, M. & Ropers, C. Field-driven photoemission from nanostructures quenches the quiver motion. Nature 483, 190–193 (2012).

    Article  ADS  Google Scholar 

  25. Kim, S. et al. High-harmonic generation by resonant plasmon field enhancement. Nature 453, 757–760 (2008).

    Article  ADS  Google Scholar 

  26. Corkum, P. Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993).

    Article  ADS  Google Scholar 

  27. Brabec, T. & Krausz, F. Intense few-cycle laser fields: Frontiers of nonlinear optics. Rev. Mod. Phys. 72, 545–591 (2000).

    Article  ADS  Google Scholar 

  28. Husakou, A., Im, S-J. & Herrmann, J. Theory of plasmon-enhanced high-order harmonic generation in the vicinity of metal nanostructures in noble gases. Phys. Rev. A 83, 043839 (2011).

    Article  ADS  Google Scholar 

  29. Husakou, A., Kelkensberg, F., Herrmann, J. & Vrakking, M. J. J. Polarization gating and circularly-polarized high harmonic generation using plasmonic enhancement in metal nanostructures. Opt. Express 19, 25346 (2011).

    Article  ADS  Google Scholar 

  30. Stebbings, S. L. et al. Generation of isolated attosecond extreme ultraviolet pulses employing nanoplasmonic field enhancement: Optimization of coupled ellipsoids. New J. Phys. 13, 073010 (2011).

    Article  ADS  Google Scholar 

  31. Yavuz, I., Bleda, E. A., Altun, Z. & Topcu, T. Generation of a broadband XUV continuum in high-order-harmonic generation by spatially inhomogeneous fields. Phys. Rev. A 85, 013416 (2012).

    Article  ADS  Google Scholar 

  32. Park, I. et al. Plasmonic generation of ultrashort extreme-ultraviolet light pulses. Nature Photon. 5, 677–681 (2011).

    Article  ADS  Google Scholar 

  33. Sivis, M., Duwe, M., Abel, B. & Ropers, C. Nanostructure-enhanced atomic line emission. Nature 485, E1–E2 (2012).

    Article  ADS  Google Scholar 

  34. Kim, S. et al. Reply. Nature 485, E2–E3 (2012).

    Article  Google Scholar 

  35. Kern, C. et al. Comparison of femtosecond laser-induced damage on unstructured versus nano-structured Au-targets. Appl. Phys. A 104, 15–21 (2011).

    Article  ADS  Google Scholar 

  36. Raschke, M. B. High-harmonic generation with plasmonics: Feasible or unphysical? Ann. Phys. 525, A40–A42 (2013).

    Article  ADS  Google Scholar 

  37. Sansonetti, J. E. & Martin, W. C. Handbook of basic atomic spectroscopic data. J. Phys. Chem. Ref. Data 34, 1559–2259 (2005).

    Article  ADS  Google Scholar 

  38. Shen, Y. R. Surface properties probed by second-harmonic and sum-frequency generation. Nature 337, 519–525 (1989).

    Article  ADS  Google Scholar 

  39. Tsang, T. Third- and fifth-harmonic generation at the interfaces of glass and liquids. Phys. Rev. A 54, 5454–5457 (1996).

    Article  ADS  Google Scholar 

  40. Augst, S., Strickland, D., Meyerhofer, D., Chin, S. & Eberly, J. Tunneling ionization of noble gases in a high-intensity laser field. Phys. Rev. Lett. 63, 2212–2215 (1989).

    Article  ADS  Google Scholar 

  41. Bryan, W. A. et al. Atomic excitation during recollision-free ultrafast multi-electron tunnel ionization. Nature Phys. 2, 379–383 (2006).

    Article  ADS  Google Scholar 

  42. Bryan, W. A. et al. Geometry- and diffraction-independent ionization probabilities in intense laser fields: Probing atomic ionization mechanisms with effective intensity matching. Phys. Rev. A 73, 013407 (2006).

    Article  ADS  Google Scholar 

  43. Lawrence, G. M. Radiance Lifetimes in the resonance series of Ar I. Phys. Rev. 175, 40–44 (1968).

    Article  ADS  Google Scholar 

  44. Aouani, H. et al. Colloidal quantum dots as probes of excitation field enhancement in photonic antennas. ACS Nano 4, 4571–4578 (2010).

    Article  Google Scholar 

  45. Jones, R., Moll, K., Thorpe, M. & Ye, J. Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity. Phys. Rev. Lett. 94, 193201 (2005).

    Article  ADS  Google Scholar 

  46. Gohle, C. et al. A frequency comb in the extreme ultraviolet. Nature 436, 234–237 (2005).

    Article  ADS  Google Scholar 

  47. Chiang, C., Blättermann, A., Huth, M., Kirschner, J. & Widdra, W. High-order harmonic generation at 4 MHz as a light source for time-of-flight photoemission spectroscopy. Appl. Phys. Lett. 101, 071116 (2012).

    Article  ADS  Google Scholar 

  48. Milosevic, N., Scrinzi, A. & Brabec, T. Numerical characterization of high harmonic attosecond pulses. Phys. Rev. Lett. 88, 093905 (2002).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Y. Liu and K. R. Siefermann for their helpful participation in preparatory studies, D. R. Solli and G. Herink for fruitful discussions, P. Simon, E. Lugovoy and V. Radisch for technical support and equipment, and Venteon Femtosecond Laser Technologies for providing a laser oscillator for initial experiments. Financial support by the Deutsche Forschungsgemeinschaft (DFG-ZUK 45/1 and SFB 755) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

M.S., B.A. and C.R. conceived and designed the experiment. M.S. and M.D. prepared the nanostructures and conducted the experiments. M.S., M.D. and C.R. analysed the measured data. M.S. and C.R. wrote the manuscript, with contributions from M.D. and B.A. All authors were involved in intensive discussions at all stages of the study.

Corresponding author

Correspondence to C. Ropers.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sivis, M., Duwe, M., Abel, B. et al. Extreme-ultraviolet light generation in plasmonic nanostructures. Nature Phys 9, 304–309 (2013). https://doi.org/10.1038/nphys2590

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2590

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing