Abstract

One of the elementary processes in quantum magnetism is the propagation of spin excitations. Here we study the quantum dynamics of a deterministically created spin-impurity atom, as it propagates in a one-dimensional lattice system. We probe the spatial probability distribution of the impurity at different times using single-site-resolved imaging of bosonic atoms in an optical lattice. In the Mott-insulating regime, the quantum-coherent propagation of a magnetic excitation in the Heisenberg model can be observed using a post-selection technique. Extending the study to the superfluid regime of the bath, we quantitatively determine how the bath affects the motion of the impurity, showing evidence of polaronic behaviour. The experimental data agree with theoretical predictions, allowing us to determine the effect of temperature on the impurity motion. Our results provide a new approach to studying quantum magnetism, mobile impurities in quantum fluids and polarons in lattice systems.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Interacting Electrons and Quantum Magnetism (Springer, 1998).

  2. 2.

    Douçot, B. & Zinn-Justin, J. (eds) Proceedings of the Les Houches Summer School, Session LVI (Elsevier, 1995).

  3. 3.

    , & Metal–insulator transitions. Rev. Mod. Phys. 70, 1039–1263 (1998).

  4. 4.

    Spin liquids in frustrated magnets. Nature 464, 199–208 (2010).

  5. 5.

    , , , & One dimensional bosons: From condensed matter systems to ultracold gases. Rev. Mod. Phys. 83, 1405–1466 (2011).

  6. 6.

    , , , & Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002).

  7. 7.

    , & Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008).

  8. 8.

    et al. Time-resolved observation and control of superexchange interactions with ultracold atoms in optical lattices. Science 319, 295–299 (2008).

  9. 9.

    et al. Experimental realization of plaquette resonating valence-bond states with ultracold atoms in optical superlattices. Phys. Rev. Lett. 108, 205301 (2012).

  10. 10.

    et al. Probing the superfluid-to-Mott insulator transition at the single-atom level. Science 329, 547–550 (2010).

  11. 11.

    et al. Single-atom resolved fluorescence imaging of an atomic Mott insulator. Nature 467, 68–72 (2010).

  12. 12.

    et al. Quantum simulation of antiferromagnetic spin chains in an optical lattice. Nature 472, 307–312 (2011).

  13. 13.

    & Counterflow superfluidity of two-species ultracold atoms in a commensurate optical lattice. Phys. Rev. Lett. 90, 100401 (2003).

  14. 14.

    , & Controlling spin exchange interactions of ultracold atoms in optical lattices. Phys. Rev. Lett. 91, 090402 (2003).

  15. 15.

    & Spin dynamics for bosons in an optical lattice. New J. Phys. 5, 76 (2003).

  16. 16.

    , , & Phase diagram of two-component bosons on an optical lattice. New J. Phys. 5, 113 (2003).

  17. 17.

    Statistical Mechanics (W. A. Benjamin, 1972).

  18. 18.

    et al. Observation of correlated particle–hole pairs and string order in low-dimensional Mott insulators. Science 334, 200–203 (2011).

  19. 19.

    et al. Single-spin addressing in an atomic Mott insulator. Nature 471, 319–324 (2011).

  20. 20.

    Limit theorem for continuous-time quantum walk on the line. Phys. Rev. E 72, 026113 (2005).

  21. 21.

    Quantum Physics in one Dimension (Oxford Univ. Press, 2004).

  22. 22.

    Many-Particle Physics (Plenum, 1981).

  23. 23.

    , & Spin dynamics in a one-dimensional ferromagnetic Bose gas. Phys. Rev. Lett. 99, 240404 (2007).

  24. 24.

    , & Electron–phonon correlations, polaron size, and the nature of the self-trapping transition. Phys. Lett. A 266, 414–420 (2000).

  25. 25.

    , , & Observation of Fermi polarons in a tunable Fermi liquid of ultracold atoms. Phys. Rev. Lett. 102, 230402 (2009).

  26. 26.

    , , & Quantum transport through a Tonks-Girardeau gas. Phys. Rev. Lett. 103, 150601 (2009).

  27. 27.

    et al. Collective oscillations of an imbalanced Fermi gas: Axial compression modes and polaron effective mass. Phys. Rev. Lett. 103, 170402 (2009).

  28. 28.

    , , & Impurity transport through a strongly interacting bosonic quantum gas. Phys. Rev. A 84, 023617 (2011).

  29. 29.

    et al. Quantum dynamics of impurities in a one-dimensional Bose gas. Phys. Rev. A 85, 023623 (2012).

  30. 30.

    et al. Attractive and repulsive Fermi polarons in two dimensions. Nature 485, 619–622 (2012).

  31. 31.

    , , & Critical velocity of a mobile impurity in one-dimensional quantum liquids. Phys. Rev. Lett. 108, 207001 (2012).

  32. 32.

    et al. Dynamics of single neutral impurity atoms immersed in an ultracold gas. Phys. Rev. Lett. 109, 235301 (2012).

  33. 33.

    , & Dynamical properties of the one-dimensional spin-1/2 Bose–Hubbard model near a Mott-insulator to ferromagnetic-liquid transition. Phys. Rev. Lett. 103, 110401 (2009).

  34. 34.

    , , & Observation of complex bound states in the spin-1/2 Heisenberg XXZ chain using local quantum quenches. Phys. Rev. Lett. 108, 077206 (2012).

  35. 35.

    , , & Real-time dynamics in spin-1/2 chains with adaptive time-dependent density matrix renormalization group. Phys. Rev. E 71, 036102 (2005).

  36. 36.

    , , & 1.5% root-mean-square flat-intensity laser beam formed using a binary-amplitude spatial light modulator. Appl. Opt. 48, 1955–1962 (2009).

  37. 37.

    Efficient simulation of one-dimensional quantum many-body systems. Phys. Rev. Lett. 93, 040502 (2004).

  38. 38.

    , , & Time-dependent density-matrix renormalization-group using adaptive effective Hilbert spaces. J. Stat. Mech. Theor. Exp.P04005 (2004).

  39. 39.

    & Real-time evolution using the density matrix renormalization group. Phys. Rev. Lett. 93, 076401 (2004).

  40. 40.

    , & Matrix product density operators: Simulation of finite-temperature and dissipative systems. Phys. Rev. Lett. 93, 207204 (2004).

  41. 41.

    The density-matrix renormalization group. Rev. Mod. Phys. 77, 259–315 (2005).

Download references

Acknowledgements

We thank C. Weitenberg for his contribution to the addressing scheme. This work was supported by MPG, DFG, EU (NAMEQUAM, AQUTE, Marie Curie Fellowship to M.C.) and JSPS (Postdoctoral Fellowship for Research Abroad to T.F.) and in part by the Swiss NSF under MaNEP and Division II.

Author information

Affiliations

  1. Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany

    • Takeshi Fukuhara
    • , Manuel Endres
    • , Marc Cheneau
    • , Peter Schauß
    • , Sebastian Hild
    • , David Bellem
    • , Christian Gross
    • , Immanuel Bloch
    •  & Stefan Kuhr
  2. DPMC-MaNEP, University of Geneva, 24 Quai Ernest-Ansermet, 1211 Geneva, Switzerland

    • Adrian Kantian
    •  & Thierry Giamarchi
  3. Fakultät für Physik, Ludwig-Maximilians-Universität München, 80799 München, Germany

    • Ulrich Schollwöck
    •  & Immanuel Bloch
  4. University of Strathclyde, Department of Physics, SUPA, Glasgow G4 0NG, UK

    • Stefan Kuhr

Authors

  1. Search for Takeshi Fukuhara in:

  2. Search for Adrian Kantian in:

  3. Search for Manuel Endres in:

  4. Search for Marc Cheneau in:

  5. Search for Peter Schauß in:

  6. Search for Sebastian Hild in:

  7. Search for David Bellem in:

  8. Search for Ulrich Schollwöck in:

  9. Search for Thierry Giamarchi in:

  10. Search for Christian Gross in:

  11. Search for Immanuel Bloch in:

  12. Search for Stefan Kuhr in:

Contributions

All authors contributed extensively to the work presented in this paper.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Takeshi Fukuhara.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphys2561

Further reading