Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spin-dependent trapping of electrons at spinterfaces

Abstract

Hybrid ferromagnetic metal/organic interfaces—also known as spinterfaces—can exhibit highly efficient spin-filtering properties and therefore present a promising class of materials for the future development of new spintronic devices. Advancing the field depends critically on elucidating the fundamental microscopic processes that eventually determine the spin-filtering properties in such hybrid structures. Here, we study the femtosecond spin dynamics at the prototypical interface between cobalt and the metalorganic complex tris(8-hydroxyquinolinato)aluminium. To disentangle the microscopic origin of spin filtering, we optically generate a transient spin polarization in a well-defined hybrid interface state that we follow with a spin-resolved real-time pump–probe two-photon photoemission experiment. We find that the electrons are trapped at the interface in a spin-dependent manner for a surprisingly long time of the order of 0.5–1 ps. We conclude that ferromagnetic metal/organic interfaces act as spin filters because electrons are trapped in hybrid interface states by spin-dependent confining potentials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Conceptual principle of the 2PPE experiments revealing the spin-filtering properties of the hybrid interface formed by 1 ML Alq3 on Co(100).
Figure 2: Energetics of the Alq3/Co system and excitation channel of the uHIS in the 2PPE experiments.
Figure 3: Results of the 2PPE experiments.
Figure 4: Lifetimes extracted from the 2PPE measurements.

Similar content being viewed by others

References

  1. Awschalom, D. & Flatté, M. Challenges for semiconductor spintronic. Nature Phys. 3, 153–159 (2007).

    Article  ADS  Google Scholar 

  2. Moodera, J. & Mathon, J. Spin polarized tunneling in ferromagnetic junctions. J. Magn. Magn. Mater. 200, 248–273 (1999).

    Article  ADS  Google Scholar 

  3. Miao, G-X., Müller, M. & Moodera, J. S. Magnetoresistance in double spin filter tunnel junctions with nonmagnetic electrodes and its unconventional bias dependence. Phys. Rev. Lett. 102, 076601 (2009).

    Article  ADS  Google Scholar 

  4. Moodera, J. S., Santos, T. S. & Nagahama, T. The phenomena of spin-filter tunneling. J. Phys. Condens. Matter 19, 165202 (2007).

    Article  ADS  Google Scholar 

  5. Butler, W. Tunneling magnetoresistance from a symmetry filtering effect. Sci. Technol. Adv. Mater. 9, 014106 (2008).

    Article  Google Scholar 

  6. Sanvito, S. Molecular spintronics: The rise of spinterface science. Nature Phys. 6, 562–564 (2010).

    Article  ADS  Google Scholar 

  7. Barraud, C. et al. Unravelling the role of the interface for spin injection into organic semiconductors. Nature Phys. 6, 615–620 (2010).

    Article  ADS  Google Scholar 

  8. Rocha, A. R. et al. Towards molecular spintronics. Nature Mater. 4, 335–339 (2005).

    Article  ADS  Google Scholar 

  9. Cinchetti, M. et al. Tailoring the spin functionality of a hybrid metal–organic interface by means of alkali-metal doping. Phys. Rev. Lett. 104, 217602 (2010).

    Article  ADS  Google Scholar 

  10. Atodiresei, N. et al. Design of the local spin polarization at the organic-ferromagnetic interface. Phys. Rev. Lett. 105, 066601 (2010).

    Article  ADS  Google Scholar 

  11. Brede, J. et al. Spin- and energy-dependent tunneling through a single molecule with intramolecular spatial resolution. Phys. Rev. Lett. 105, 047204 (2010).

    Article  ADS  Google Scholar 

  12. Methfessel, T. et al. Spin scattering and spin-polarized hybrid interface states at a metal-organic interface. Phys. Rev. B 84, 224403 (2011).

    Article  ADS  Google Scholar 

  13. Lach, S. et al. Metal–organic hybrid interface states of a ferromagnet/organic semiconductor hybrid junction as basis for engineering spin injection in organic spintronics. Adv. Funct. Mater. 22, 989–997 (2012).

    Article  Google Scholar 

  14. Wende, H. et al. Substrate-induced magnetic ordering and switching of iron porphyrin molecules. Nature Mater. 6, 516–520 (2007).

    Article  ADS  Google Scholar 

  15. Rizzini, A. et al. Coupling single molecule magnets to ferromagnetic substrates. Phys. Rev. Lett. 107, 177205 (2011).

    Article  ADS  Google Scholar 

  16. Tarafder, K., Sanyal, B. & Oppeneer, P. M. Charge-induced spin polarization in nonmagnetic organic molecule Alq3 . Phys. Rev. B 82, 060413 (2010).

    Article  ADS  Google Scholar 

  17. Dediu, V. A., Hueso, L. E., Bergenti, I. & Taliani, C. Spin routes in organic semiconductors. Nature Mater. 8, 707–716 (2009).

    Article  ADS  Google Scholar 

  18. Hill, I. G., Mäkinen, A. J. & Kafafi, Z. H. Distinguishing between interface dipoles and band bending at metal/tris-(8-hydroxyquinoline) aluminum interfaces. Appl. Phys. Lett. 77, 1825–1827 (2000).

    Article  ADS  Google Scholar 

  19. Baldo, M. & Forrest, S. Interface-limited injection in amorphous organic semiconductors. Phys. Rev. B 64, 085201 (2001).

    Article  ADS  Google Scholar 

  20. Hammer, B. & Nörskov, J. Theoretical surface science and catalysis-calculations and concepts. Adv. Catal. 45, 71–129 (2000).

    Google Scholar 

  21. Zhan, Y. et al. Energy level alignment and chemical interaction at Alq3/Co interfaces for organic spintronic devices. Phys. Rev. B 78, 045208 (2008).

    Article  ADS  Google Scholar 

  22. Neaton, J., Hybertsen, M. & Louie, S. Renormalization of molecular electronic levels at metal-molecule. Phys. Rev. Lett 97, 216405 (2006).

    Article  ADS  Google Scholar 

  23. Wang, Y-Z. et al. Tuning the electron injection barrier between Co and C60 using Alq3 buffer layer. J. Appl. Phys. 108, 103719 (2010).

    Article  ADS  Google Scholar 

  24. Zhu, X. Electronic structure and electron dynamics at molecule-metal interfaces: Implications for molecule-based electronics. Surf. Sci. Rep. 56, 1–83 (2004).

    Article  ADS  Google Scholar 

  25. Cölle, M. & Brütting, W. Physics of Organic Semiconductors Ch. 4 (Wiley, 2005).

    Google Scholar 

  26. Schwalb, C. H. et al. Electron lifetime in a Shockley-type metal–organic interface state. Phys. Rev. Lett. 101, 146801 (2008).

    Article  ADS  Google Scholar 

  27. Aeschlimann, M. et al. Ultrafast spin-dependent electron dynamics in fcc Co. Phys. Rev. Lett. 79, 5158–5161 (1997).

    Article  ADS  Google Scholar 

  28. Krause, S., Casu, M. B., Schoell, A. & Umbach, E. Determination of transport levels of organic semiconductors by UPS and IPS. New J. Phys. 10, 085001 (2008).

    Article  ADS  Google Scholar 

  29. Iacovita, C. et al. Visualizing the spin of individual cobalt-phthalocyanine molecules. Phys. Rev. Lett. 101, 116602 (2008).

    Article  ADS  Google Scholar 

  30. Takács, A. F. Electron transport through single phthalocyanine molecules studied using scanning tunneling microscopy. Phys. Rev. B 78, 233404 (2008).

    Article  ADS  Google Scholar 

  31. Cinchetti, M. et al. Spin-flip processes and ultrafast magnetization dynamics in Co-unifying the microscopic and macroscopic view of femtosecond magnetism. Phys. Rev. Lett. 97, 177201 (2006).

    Article  ADS  Google Scholar 

  32. Schmuttenmaer, C. A. et al. Time resolved two photon photoemission from Cu(100): Energy dependence of electron relaxation. Phys. Rev. B 50, 8957–8960 (1994).

    Article  ADS  Google Scholar 

  33. Andreyev, O. et al. Spin-resolved two-photon photoemission study of the surface resonance state on Co/Cu(001). Phys. Rev. B 74, 195416 (2006).

    Article  ADS  Google Scholar 

  34. Cinchetti, M. et al. Determination of spin injection and transport in a ferromagnet/organic semiconductor heterojunction by two-photon photoemission. Nature Mater. 8, 115–119 (2009).

    Article  ADS  Google Scholar 

  35. Hill, I. G., Kahn, A., Cornil, J., dos Santos, D. A. & Brédas, J. L. Occupied and unoccupied electronic levels in organic π-conjugated molecules: Comparison between experiment and theory. Chem. Phys. Lett. 317, 444–450 (2000).

    Article  ADS  Google Scholar 

  36. Jiang, J. S., Pearson, J. E. & Bader, S. D. Direct determination of energy level alignment and charge transport at metal–Alq3 interfaces via ballistic-electron-emission spectroscopy. Phys. Rev. Lett. 106, 156807 (2011).

    Article  ADS  Google Scholar 

  37. Humbs, W., Zhang, H. & Glasbeek, M. Femtosecond fluorescence upconversion spectroscopy of vapor-deposited tris(8-hydroxyquinoline) aluminum films. Chem. Phys. 254, 319–327 (2000).

    Article  Google Scholar 

Download references

Acknowledgements

The research leading to these results was partly financially supported by the EU project NMP3-SL-2011-263104 ‘HINTS’.

Author information

Authors and Affiliations

Authors

Contributions

The experiments were planned and supervised by M.A., M.C. and S.S. The measurements were performed by N.G., M.L., A.R., D.S. and S.S. The data were analysed by N.G., S.S. and M.W. The authors M.A., M.C., N.G., O.L.A.M., S.M., D.S., S.S. and M.W. discussed the results. M.A., M.C., O.L.A.M., S.M. and S.S. wrote the manuscript.

Corresponding author

Correspondence to Mirko Cinchetti.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 717 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steil, S., Großmann, N., Laux, M. et al. Spin-dependent trapping of electrons at spinterfaces. Nature Phys 9, 242–247 (2013). https://doi.org/10.1038/nphys2548

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2548

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing