Article | Published:

Spontaneous synchrony in power-grid networks

Nature Physics volume 9, pages 191197 (2013) | Download Citation

Abstract

An imperative condition for the functioning of a power-grid network is that its power generators remain synchronized. Disturbances can prompt desynchronization, which is a process that has been involved in large power outages. Here we derive a condition under which the desired synchronous state of a power grid is stable, and use this condition to identify tunable parameters of the generators that are determinants of spontaneous synchronization. Our analysis gives rise to an approach to specify parameter assignments that can enhance synchronization of any given network, which we demonstrate for a selection of both test systems and real power grids. These findings may be used to optimize stability and help devise new control schemes, thus offering an additional layer of protection and contributing to the development of smart grids that can recover from failures in real time.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , & Critical phenomena in complex networks. Rev. Mod. Phys. 80, 1275–1335 (2008).

  2. 2.

    , , , & Synchronization in complex networks. Phys. Rep. 469, 93–153 (2008).

  3. 3.

    Exploring complex networks. Nature 410, 268–276 (2001).

  4. 4.

    & Chimera states for coupled oscillators. Phys. Rev. Lett. 93, 174102 (2004).

  5. 5.

    & Low dimensional behaviour of large systems of globally coupled oscillators. Chaos 18, 037113 (2008).

  6. 6.

    & Network synchronization landscape reveals compensatory structures, quantization, and the positive effect of negative interactions. Proc. Natl Acad. Sci. USA 107, 10342–10347 (2010).

  7. 7.

    et al. Experimental observation of chimeras in coupled-map lattices. Nature Phys. 8, 658–661 (2012).

  8. 8.

    , & Chimera and phase-cluster states in populations of coupled chemical oscillators. Nature Phys. 8, 662–665 (2012).

  9. 9.

    , , , & Emergence of structural patterns out of synchronization in networks with competitive interactions. Sci. Rep. 1, 99 (2011).

  10. 10.

    et al. Robustness of optimal synchronization in real networks. Phys. Rev. Lett. 107, 034102 (2011).

  11. 11.

    , & Network synchronization in a noisy environment with time delays: Fundamental limits and trade-offs. Phys. Rev. Lett. 105, 068701 (2010).

  12. 12.

    , & Master stability functions for coupled nearly identical dynamical systems. Europhys. Lett. 85, 60011 (2009).

  13. 13.

    , & On pinning synchronization of complex dynamical networks. Automatica 45, 429–435 (2009).

  14. 14.

    , , & Engineering complex dynamical structures: Sequential patterns and desynchronization. Science 316, 1886–1889 (2007).

  15. 15.

    , & The emergence of coherence in complex networks of heterogeneous dynamical systems. Phys. Rev. Lett. 96, 254103 (2006).

  16. 16.

    , , , & Crowd synchrony on the Millennium Bridge. Nature 438, 43–44 (2005).

  17. 17.

    , , , & The sound of many hands clapping. Nature 403, 849–850 (2000).

  18. 18.

    & Transforming the electric infrastructure. Phys. Today 57, 45–51 (2004).

  19. 19.

    SYNC: The Emerging Science of Spontaneous Order (Hyperion, 2003).

  20. 20.

    , & Role of network topology in the synchronization of power systems. Eur. Phys. J. B 85, 1–8 (2012).

  21. 21.

    , , & Self-organized synchronization in decentralized power grids. Phys. Rev. Lett. 109, 064101 (2012).

  22. 22.

    & Nonlinear Koopman modes and coherency identification of coupled swing dynamics. IEEE T. Power Syst. 26, 1894–1904 (2011).

  23. 23.

    , & Global swing instability in the New England power grid model. Proc. 2009 American Control Conf. 3446–3451 (IEEE, 2009).

  24. 24.

    Model reduction for analysis of cascading failures in power systems. Proc. 1999 American Control Conf. 4208–4212 (IEEE, 1999).

  25. 25.

    & Synchronization and transient stability in power networks and non-uniform Kuramoto oscillators. Proc. 2010 American Control Conf. 930–937 (IEEE, 2010).

  26. 26.

    & On the critical coupling for Kuramoto oscillators. SIAM J. Appl. Dyn. Syst. 10, 1070–1099 (2011).

  27. 27.

    & Synchronization and transient stability in power networks and non-uniform Kuramoto oscillators. SIAM J. Control Optim. 50, 1616–1642 (2012).

  28. 28.

    NERC System Disturbances Reports 1992–2009 (North American Electric Reliability Corporation, ).

  29. 29.

    & Power System Analysis (McGraw-Hill, 2004).

  30. 30.

    & Power System Control and Stability 2nd edn (IEEE Press-Wiley Interscience, 2003).

  31. 31.

    & Spectral analysis of synchronization in a lossless structure-preserving power network model. Proc. First IEEE Int. Conf. Smart Grid Communications 179–184 (IEEE, 2010).

  32. 32.

    , , & Heterogeneity in oscillator networks: Are smaller worlds easier to synchronize? Phys. Rev. Lett. 91, 014101 (2003).

  33. 33.

    , & Enhancing complex-network synchronization. Europhys. Lett. 69, 334–340 (2005).

  34. 34.

    & Master stability functions for synchronized coupled systems. Phys. Rev. Lett. 80, 2109–2112 (1998).

  35. 35.

    , , , & Three coupled oscillators as a universal probe of synchronization stability in coupled oscillator arrays. Phys. Rev. E 61, 5080–5090 (2000).

  36. 36.

    , , , & Coordinated multi-machine stabilizer settings without eigenvalue drift. IEEE T. Power Ap. Syst. 100, 3879–3887 (1981).

  37. 37.

    et al. Avoiding and Suppressing Oscillations PSerc Publication 00–01 (Univ. of Wisconsin, 1999).

  38. 38.

    , & Phasor Measurement Unit (PMU) Implementation and Applications (Electric Power Research Institute, 2007).

  39. 39.

    , & Identifying, understanding, and analysing critical infrastructure interdependencies. IEEE Contr. Syst. Mag. 21, 11–25 (2001).

  40. 40.

    Synchrony-optimized networks of non-identical Kuramoto oscillators. Phys. Lett. A 372, 2618–2622 (2008).

  41. 41.

    , & Optimized network structure for full-synchronization. Commun. Nonlinear Sci. 14, 2536–2541 (2009).

  42. 42.

    , & Synchronization in symmetric bipolar population networks. Phys. Rev. E 80, 066120 (2009).

  43. 43.

    & On the topology of synchrony optimized networks of a Kuramoto-model with non-identical oscillators. Chaos 21, 025110 (2011).

  44. 44.

    , , & Explosive synchronization transitions in scale-free networks. Phys. Rev. Lett. 106, 128701 (2011).

  45. 45.

    , & Self-organized network evolution coupled to extremal dynamics. Nature Phys. 3, 813–817 (2007).

  46. 46.

    Power Systems Analysis Toolbox (Univ. Castilla, 2007).

Download references

Acknowledgements

The authors thank F. Milano for providing power-grid data, E. Mallada for sharing unpublished simulation details, and F. Dörfler for insightful discussions. This work was supported by the NSF under grants DMS-1057128 and DMS-0709212, the LANL LDRD project Optimization and Control Theory for Smart Grids, and a Northwestern-Argonne Early Career Investigator Award for Energy Research to A.E.M.

Author information

Affiliations

  1. Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, USA

    • Adilson E. Motter
    •  & Takashi Nishikawa
  2. Northwestern Institute on Complex Systems, Northwestern University, Evanston, Illinois 60208, USA

    • Adilson E. Motter
  3. Institute for Computational and Mathematical Engineering, Stanford University, Stanford, California 94305, USA

    • Seth A. Myers
  4. Information Sciences Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87544, USA

    • Marian Anghel

Authors

  1. Search for Adilson E. Motter in:

  2. Search for Seth A. Myers in:

  3. Search for Marian Anghel in:

  4. Search for Takashi Nishikawa in:

Contributions

All authors contributed to the design of the research and analytical calculations. S.A.M., M.A. and T.N. performed the numerical simulations. A.E.M. and T.N. wrote the paper, and A.E.M. supervised the project.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Adilson E. Motter.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphys2535

Further reading