Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A large-scale quantum simulator on a diamond surface at room temperature


Strongly correlated quantum many-body systems may exhibit exotic phases, such as spin liquids and supersolids. Although their numerical simulation becomes intractable for as few as 50 particles, quantum simulators offer a route to overcome this computational barrier. However, proposed realizations either require stringent conditions such as low temperature/ultra-high vacuum, or are extremely hard to scale. Here, we propose a new solid-state architecture for a scalable quantum simulator that consists of strongly interacting nuclear spins attached to the diamond surface. Initialization, control and read-out of this quantum simulator can be accomplished with nitrogen-vacancy centers implanted in diamond. The system can be engineered to simulate a wide variety of strongly correlated spin models. Owing to the superior coherence time of nuclear spins and nitrogen-vacancy centers in diamond, our proposal offers new opportunities towards large-scale quantum simulation at ambient conditions of temperature and pressure.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Lattices of fluorine nuclear spin.
Figure 2: Initialization and read-out of nuclear spins.
Figure 3: Isolation and initialization of nuclear spins.
Figure 4: Quantum magnetic phase transitions of the fluorine quantum simulation on a triangular lattice.
Figure 5: Quantum phases of superfluids and supersolids.
Figure 6: Tuning spin anisotropy with dressed states.


  1. Sachdev, S. Quantum magnetism and criticality. Nature Phys. 4, 173–185 (2008).

    Article  ADS  Google Scholar 

  2. Lacroix, C., Mendels, P. & Mila, F. (eds) Introduction to Frustrated Magnetism (Springer Series in Solid State Sciences, Vol. 164, Springer, 2011).

  3. Leggett, A. J. Can a solid be superfluid? Phys. Rev. Lett. 25, 1543–1546 (1970).

    Article  ADS  Google Scholar 

  4. Kim, E. & Chan, M. H. W. Probable observation of a supersolid helium phase. Nature 427, 225–227 (2004).

    Article  ADS  Google Scholar 

  5. Balents, L. Spin liquids in frustrated magnets. Nature 464, 199–208 (2010).

    Article  ADS  Google Scholar 

  6. Meng, Z. Y., Lang, T. C., Wessel, S., Assaad, F. F. & Muramatsu, A. Quantum spin liquid emerging in two-dimensional correlated Dirac fermions. Nature 464, 847–851 (2010).

    Article  ADS  Google Scholar 

  7. Anderson, P. W. The resonating valence bond state in La2CuO4 and superconductivity. Science 235, 1196–1198 (1987).

    Article  ADS  Google Scholar 

  8. Feynman, R. P. Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982).

    Article  MathSciNet  Google Scholar 

  9. Lloyd, S. Universal quantum simulators. Science 273, 1073–1078 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  10. Buluta, I. & Nori, F. Quantum simulators. Science 326, 108–111 (2009).

    Article  ADS  Google Scholar 

  11. Bloch, I., Dalibard, J. & Nascimbène, S. Quantum simulations with ultracold quantum gases. Nature Phys. 8, 267–276 (2012).

    Article  ADS  Google Scholar 

  12. Simon, J. et al. Quantum simulation of antiferromagnetic spin chains in an optical lattice. Nature 472, 307–312 (2011).

    Article  ADS  Google Scholar 

  13. Struck, J. et al. Quantum simulation of frustrated classical magnetism in triangular optical lattices. Science 333, 996–999 (2011).

    Article  ADS  Google Scholar 

  14. Blatt, R. & Roos, C. F. Quantum simulations with trapped ions. Nature Phys. 8, 277–284 (2012).

    Article  ADS  Google Scholar 

  15. Britton, J. W. et al. Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins. Nature 484, 489–492 (2012).

    Article  ADS  Google Scholar 

  16. Aspuru-Guzik, A. & Walther, P. Photonic quantum simulators. Nature Phys. 8, 285–291 (2012).

    Article  ADS  Google Scholar 

  17. Houck, A. A., Türeci, H. E. & Koch, J. On-chip quantum simulation with superconducting circuits. Nature Phys. 8, 292–299 (2012).

    Article  ADS  Google Scholar 

  18. Ristein, J. Diamond surfaces: Familiar and amazing. Appl. Phys. A 82, 377–384 (2006).

    Article  ADS  Google Scholar 

  19. Sen, F. G., Qi, Y. & Alpas, A. T. Surface stability and electronic structure of hydrogen- and fluorine-terminated diamond surfaces: A first-principles investigation. J. Mater. Res. 24, 2461–2470 (2009).

    Article  ADS  Google Scholar 

  20. Nair, R. R. et al. Fluorographene: A two-dimensional counterpart of teflon. Small 6, 2877–2884 (2010).

    Article  Google Scholar 

  21. Balasubramanian, G. et al. Ultralong spin coherence time in isotopically engineered diamond. Nature Mater. 8, 383–387 (2009).

    Article  ADS  Google Scholar 

  22. Smentkowski, V. S. & Yates, J. T. Jr Fluorination of diamond surfaces by irradiation of perfluorinated alkyl iodides. Science 271, 193–195 (1996).

    Article  ADS  Google Scholar 

  23. Ofori-Okai, B. K. et al. Spin properties of very shallow nitrogen vacancy defects in diamond. Phys. Rev. B 86, 081406 (2012).

    Article  ADS  Google Scholar 

  24. Ohno, K. et al. Engineering shallow spins in diamond with nitrogen delta-doping.Appl. Phys. Lett. 101, 082413 (2012).

    Article  ADS  Google Scholar 

  25. Hartmann, S. R. & Hahn, E. L. Nuclear double resonance in the rotating frame. Phys. Rev. 128, 2042–2053 (1962).

    Article  ADS  Google Scholar 

  26. Cai, J-M., Jelezko, F., Plenio, M. B. & Retzker, A. Diamond based single molecule magnetic resonance spectroscopy. New J. Phys. Preprint at (2011).

  27. Goldburg, W. I. & Lee, M. Nuclear magnetic resonance line narrowing by a rotating rf field. Phys. Rev. Lett. 11, 255–258 (1963).

    Article  ADS  Google Scholar 

  28. Dobrovitski, V. V. & De Raedt, H. A. Efficient scheme for numerical simulations of the spin-bath decoherence. Phys. Rev. E 67, 056702 (2003).

    Article  ADS  Google Scholar 

  29. Christ, H., Cirac, J. I. & Giedke, G. Quantum description of nuclear spin cooling in a quantum dot. Phys. Rev. B 75, 155324 (2007).

    Article  ADS  Google Scholar 

  30. Islam, R. et al. Onset of a quantum phase transition with a trapped ion quantum simulator. Nature Commun. 2, 377 (2011).

    Article  ADS  Google Scholar 

  31. Maurer, P. C. et al. Room-temperature quantum bit memory exceeding one second. Science 336, 1283–1286 (2012).

    Article  ADS  Google Scholar 

  32. Chen, S-W. & Liu, R-B. Quantum criticality at infinite temperature. Preprint at (2012).

  33. Cramer, M., Plenio, M. B. & Wunderlich, H. Measuring entanglement in condensed matter systems. Phys. Rev. Lett. 106, 020401 (2011).

    Article  ADS  Google Scholar 

  34. Mamin, H. J., Rettner, C. T., Sherwood, M. H., Gao, L. & Rugar, D. High field-gradient dysprosium tips for magnetic resonance force microscopy. Appl. Phys. Lett. 100, 013102 (2012).

    Article  ADS  Google Scholar 

  35. Sandvik, A. W. & Kurkijärvi, J. Quantum Monte Carlo simulation method for spin systems. Phys. Rev. B 43, 5950–5961 (1991).

    Article  ADS  Google Scholar 

  36. Micheli, A., Brennen, G. K. & Zoller, P. A toolbox for lattice-spin models with polar molecules. Nature Phys. 2, 341–347 (2006).

    Article  ADS  Google Scholar 

  37. Gorshkov, A. V. et al. Tunable superfluidity and quantum magnetism with ultracold polar molecules. Phys. Rev. Lett. 107, 115301 (2011).

    Article  ADS  Google Scholar 

  38. Capogrosso-Sansone, B., Trefzger, C., Lewenstein, M., Zoller, P. & Pupillo, G. Quantum phases of cold polar molecules in 2D optical lattices. Phys. Rev. Lett. 104, 125301 (2010).

    Article  ADS  Google Scholar 

  39. Pollet, L., Picon, J. D., Büchler, H. P. & Troyer, M. Supersolid phase with cold polar molecules on a triangular lattice. Phys. Rev. Lett. 104, 125302 (2010).

    Article  ADS  Google Scholar 

  40. Bauer, B. et al. (ALPS collaboration) The ALPS project release 2.0: Open source software for strongly correlated systems. J. Stat. Mech. P05001 (2011).

  41. Yao, N. Y. et al. Topological flat bands from dipolar spin systems. Preprint at (2012).

  42. Yao, N. Y. et al. Scalable architecture for a room temperature solid-state quantum information processor. Nature Commun. 3, 800 (2012).

    Article  ADS  Google Scholar 

  43. Grotz, B. et al. Charge state manipulation of qubits in diamond. Nature Commun. 3, 729 (2012).

    Article  ADS  Google Scholar 

  44. Jiang, L. et al. Repetitive readout of a single electronic spin via quantum logic with nuclear spin ancillae. Science 326, 267–272 (2009).

    Article  ADS  Google Scholar 

  45. Fuchs, G. D., Dobrovitski, V. V., Toyli, D. M., Heremans, F. J. & Awschalom, D. D. Gigahertz dynamics of a strongly driven single quantum spin. Science 326, 1520–1522 (2009).

    Article  ADS  Google Scholar 

  46. Staudacher, T. et al. Augmenting the spin properties of shallow implanted NV-centers by CVD-overgrowth. Preprint at (2012).

  47. Britnell, L. et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335, 947–950 (2012).

    Article  ADS  Google Scholar 

  48. Kohler, S., Lehmann, J. & Hanggi, P. Driven quantum transport on the nanoscale. Phys. Rep. 406, 379–443 (2005).

    Article  ADS  Google Scholar 

  49. Giampaolo, S. M., Gualdi, G., Monras, A. & Illuminati, F. Characterizing and quantifying frustration in quantum many-body systems. Phys. Rev. Lett. 107, 260602 (2011).

    Article  ADS  Google Scholar 

  50. Rossini, D., Giovannetti, V. & Fazio, R. Spin-supersolid phase in Heisenberg chains: A characterization via matrix product states with periodic boundary conditions. Phys. Rev. B 83, 140411(R) (2011).

    Article  ADS  Google Scholar 

Download references


We are grateful for valuable communications with M. Troyer, L. Pollet and B. Capogrosso-Sansone about the properties of supersolids and QMC simulations with ALPS. We also thank R. Rosenbach and J. Almeida for their help in numerical simulations. The work was supported by the Alexander von Humboldt Foundation, the EU Integrating Project Q-ESSENCE, the EU STREP PICC and DIAMANT, the BMBF Verbundprojekt QuOReP, DFG (FOR 1482, FOR 1493, SFB/TR 21) and DARPA. J.C. was also supported by a Marie-Curie Intra-European Fellowship (FP7). Computations were performed on the bwGRiD.

Author information

Authors and Affiliations



M.B.P. proposed the idea and developed it further together with F.J. and J.C. J.C. carried out the numerical and analytical work with advice from F.J., M.B.P. and A.R. All authors discussed the results. J.C. drafted the manuscript with input from F.J., M.B.P. and A.R.

Corresponding author

Correspondence to Martin B. Plenio.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 983 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cai, J., Retzker, A., Jelezko, F. et al. A large-scale quantum simulator on a diamond surface at room temperature. Nature Phys 9, 168–173 (2013).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing