Abstract
Recent observations of oscillatory features in the optical response of photosynthetic complexes have revealed evidence for surprisingly long-lasting electronic coherences which can coexist with energy transport. These observations have ignited multidisciplinary interest in the role of quantum effects in biological systems, including the fundamental question of how electronic coherence can survive in biological surroundings. Here we show that the non-trivial spectral structures of protein fluctuations can generate non-equilibrium processes that lead to the spontaneous creation and sustenance of electronic coherence, even at physiological temperatures. Developing new advanced simulation tools to treat these effects, we provide a firm microscopic basis to successfully reproduce the experimentally observed coherence times in the Fenna–Matthews–Olson complex, and illustrate how detailed quantum modelling and simulation can shed further light on a wide range of other non-equilibrium processes which may be important in different photosynthetic systems.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Tailoring the superradiant and subradiant nature of two coherently coupled quantum emitters
Nature Communications Open Access 26 May 2022
-
Exact simulation of pigment-protein complexes unveils vibronic renormalization of electronic parameters in ultrafast spectroscopy
Nature Communications Open Access 25 May 2022
-
Global correlation and local information flows in controllable non-Markovian open quantum dynamics
npj Quantum Information Open Access 03 March 2022
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Blankenship, R. Molecular Mechanisms of Photosynthesis (Wiley-Blackwell, 2002).
Van Amerongen, H., Valkunas, L. & van Grondelle, R. Photosynthetic Excitons (World Scientific, 2000).
Scholes, G., Fleming, G., Olaya-Castro, A. & van Grondelle, R. Lessons from nature about solar light harvesting. Nature Chem. 3, 763–774 (2011).
Engel, G. S. et al. Evidence for wavelike energy transfer through quantum coherence in photosynthetic complexes. Nature 446, 782–786 (2007).
Panitchayangkoon, G. et al. Long-lived quantum coherence in photosynthetic complexes at physiological temperature. Proc. Natl Acad. Sci. USA 107, 12766–12770 (2010).
Calhoun, T. et al. Quantum coherence enabled determination of the energy landscape in light-harvesting complex II. J. Phys. Chem. B 113, 16291–16295 (2009).
Hayes, D. et al. Dynamics of electronic dephasing in the Fenna–Matthews–Olson complex. New J. Phys. 12, 065042 (2010).
Collini, E. et al. Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature 463, 644–647 (2010).
Mohseni, M., Rebentrost, P., Lloyd, S. & Aspuru-Guzik, A. Environment-assisted quantum walks in photosynthetic energy transfer. J. Chem. Phys. 129, 174106 (2008).
Plenio, M. B. & Huelga, S. F. Dephasing-assisted transport: Quantum networks and biomolecules. New J. Phys. 10, 113019 (2008).
Caruso, F., Chin, A. W., Datta, A., Huelga, S. F. & Plenio, M. B. Highly efficient energy excitation transfer in light-harvesting complexes: The fundamental role of noise-assisted transport. J. Chem. Phys. 131, 105106 (2009).
Ishizaki, A., Calhoun, T., Schlau-Cohen, G. & Fleming, G. R. Quantum coherence and its interplay with protein environments in photosynthetic electronic energy transfer. Phys. Chem. Chem. Phys. 12, 7319–7337 (2010).
Olaya-Castro, A., Lee, C., Olsen, F. & Johnson, N. Efficiency of energy transfer in a light-harvesting system under quantum coherence. Phys. Rev. B 78, 085115 (2008).
Prior, J., Chin, A. W., Huelga, S. F. & Plenio, M. B. Efficient simulation of strong system-environment interactions. Phys. Rev. Lett. 105, 050404 (2010).
Chin, A. W., Rivas, A., Huelga, S. F. & Plenio, M. B. Exact mapping between system-reservoir quantum models and semi-infinite discrete chains using orthogonal polynomials. J. Math. Phys. 51, 092109 (2010).
Chin, A. W., Huelga, S. F. & Plenio, M. B. Chain representations of open quantum systems and their numerical simulation with time-adapative density matrix renormalisation group methods. Semiconduct. Semimet. 85, 115–143 (2011).
Matsuzaki, S., Zazubovich, V., Rätsep, M., Hayes, J. & Small, G. Energy transfer kinetics and low energy vibrational structure of the three lowest energy Qy-states of the Fenna-Matthews-Olson antenna complex. J. Phys. Chem. B 104, 9564–9572 (2000).
Wending, M. et al. Electron-vibrational coupling in the Fenna-Matthews-Olson complex of Prosthecochloris aestuarii determined by temperature-dependent absorption and fluorescence line-narrowing measurements. J. Phys. Chem. B 104, 5825–5831 (2000).
Rätsep, M., Blankenship, R. E. & Small, G. J. Energy transfer and spectral dynamics of the three lowest energy Qy-states of the Fenna-Matthews-Olson antenna complex. J. Phys. Chem. B 103, 5736–5741 (1999).
Rätsep, M. & Freiberg, A. Electron–phonon and vibronic couplings in the FMO bacteriochlorophyll a antenna complex studied by difference fluorescence line narrowing. J. Lumin. 127, 251–259 (2007).
Pachón, P. A. & Brumer, P. The physical basis for long-lived electronic coherence in photosynthetic light harvesting systems. J. Phys. Chem. Lett. 2, 2728–2732 (2011).
Kreisbeck, C. & Kramer, T. Long-lived electronic coherence in dissipative exciton-dynamics of light-harvesting complexes. J. Phys. Chem. Lett. 3, 2828–2833 (2012).
Scully, M. O., Chaplin, K. R., Dorfman, E., Kim, M. B. & Svidzinsky, A. Quantum heat engine power can be increased by noise-induced coherence. Proc. Natl Acad. Sci. USA 108, 15097–15100 (2011).
Plenio, M. B. & Huelga, S. F. Entangled light from white noise. Phys. Rev. Lett. 88, 197901 (2002).
Eisert, J., Plenio, M. B., Bose, S. & Hartley, J. Towards quantum entanglement in nanoelectromechanical devices. Phys. Rev. Lett. 93, 190402 (2004).
Huelga, S. F. & Plenio, M. B. Stochastic resonance phenomena in quantum many-body systems. Phys. Rev. Lett. 98, 170601 (2007).
Hartmann, L., Dür, W. & Briegel, H-J. Entanglement and its dynamics in open, dissipative systems. New J. Phys. 9, 230 (2007).
Cai, J. M., Briegel, H. J. & Popescu, S. Dynamic entanglement in oscillating molecules and potential biological implications. Phys. Rev. E 82, 021921 (2010).
Semião, F. L., Furuya, K. & Milburn, G. J. Vibration-enhanced quantum transport. New J. Phys. 12, 083033 (2010).
Sarovar, M., Cheng, Y. & Whaley, K. Environmental correlation effects on excitation energy transfer in photosynthetic light harvesting. Phys. Rev. E 83, 011906 (2011).
Chin, A. W., Huelga, S. F. & Plenio, M. B. Coherence and decoherence in biological systems: Principles of noise-assisted transport and the origin of long-lived coherences. Phil. Trans. Act. R. Soc. A 370, 3638–3657 (2012).
Caycedo-Soler, F., Chin, A. W., Almeida, J., Huelga, S. F. & Plenio, M. B. The nature of the low energy band of the Fenna-Matthews-Olson complex: Vibronic signatures. J. Chem. Phys. 136, 155102 (2012).
Christensson, N., Kauffmann, H., Pullerits, T. & Mancal, T. Origin of long-lived coherences in light-harvesting complexes. J. Phys. Chem. B 116, 7449–7454 (2012).
Novoderezhkin, V. I., Yakovlev, A. G., van Grondelle, R. & Shuvalov, V. A. Coherent nuclear and electronic dynamics in primary charge separation in photosynthetic reaction centers: A redfield theory approach. J. Chem. Phys. B 108, 7445–7457 (2004).
Adolphs, J. & Renger, T. How proteins trigger excitation energy transfer in the fmo complex of green sulfur bacteria. Biophys. J. 91, 2778–2797 (2006).
Louwve, R. J. W. & Aartsma, T. J. On the nature of energy transfer at low temperatures in the bchl a pigment-protein complex of green sulfur bacteria. J. Chem. Phys. B 101, 7221–7226 (1997).
Hildner, R., Brinks, D. & van Hulst, N. Femtosecond coherence and quantum control of single molecules at room temperature. Nature Phys. 7, 172–177 (2010).
Theiss, C. et al. Pigment-pigment and pigment-protein interactions in recombinant water-soluble chlorophyll proteins (WSCP) from cauliflower. J. Phys. Chem. B 111, 13325–13335 (2007).
Panitchayangkoon, G. et al. Direct evidence of quantum transport in photosynthetic light-harvesting complexes. Proc. Natl Acad. Sci. USA 108, 20908–20912 (2011).
Collini, E. & Scholes, G. Coherent intrachain energy migration in a conjugated polymer at room temperature. Science 323, 369–373 (2009).
Collini, E. & Scholes, G. Electronic and vibrational coherences in resonance energy transfer along MEH-PPV chains at room temperature. J. Phys. Chem. A 113, 4223–4241 (2009).
Acknowledgements
This work was supported by the Alexander von Humboldt-Foundation, the EU STREP project PICC and the EU Integrated Project Q-ESSENCE. A.W.C. acknowledges support from the Winton Programme for the Physics of Sustainability. J.P. was supported by Ministerio de Ciencia e Innovación Project No. FIS2009-13483-C02-02 and the Fundación Séneca Project No. 11920/PI/09-j. We acknowledge the bwGRiD project (http://www.bw-grid.de) for the computational resources. Aspects of this work have benefited from discussions with J. Almeida, A. G. Dijkstra, D. Hayes, J. Caram, G. S. Engel and R. van Grondelle.
Author information
Authors and Affiliations
Contributions
S.F.H. and M.B.P. designed the research with input from A.W.C.; A.W.C. and F.C-S. carried out the analytical calculations with advice from S.F.H. and M.B.P.; J.P. and R.R. developed the numerical codes and carried out the numerical simulations with guidance from A.W.C. and M.B.P. All authors discussed the results. S.F.H. and M.B.P. led the project. A.W.C., F.C.S., S.F.H. and M.B.P. wrote the manuscript with input of all authors.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary Information (PDF 543 kb)
Rights and permissions
About this article
Cite this article
Chin, A., Prior, J., Rosenbach, R. et al. The role of non-equilibrium vibrational structures in electronic coherence and recoherence in pigment–protein complexes. Nature Phys 9, 113–118 (2013). https://doi.org/10.1038/nphys2515
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphys2515
This article is cited by
-
Global correlation and local information flows in controllable non-Markovian open quantum dynamics
npj Quantum Information (2022)
-
Exact simulation of pigment-protein complexes unveils vibronic renormalization of electronic parameters in ultrafast spectroscopy
Nature Communications (2022)
-
Tailoring the superradiant and subradiant nature of two coherently coupled quantum emitters
Nature Communications (2022)
-
Quantum Coherence and Transfer of Quantum Information with a Kerr Medium Under Decoherence
International Journal of Theoretical Physics (2021)
-
Impact of $\mathcal {P}\mathcal {T}$-Symmetric Operation on Concurrence and the First-Order Coherence
International Journal of Theoretical Physics (2021)