Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The role of non-equilibrium vibrational structures in electronic coherence and recoherence in pigment–protein complexes

Abstract

Recent observations of oscillatory features in the optical response of photosynthetic complexes have revealed evidence for surprisingly long-lasting electronic coherences which can coexist with energy transport. These observations have ignited multidisciplinary interest in the role of quantum effects in biological systems, including the fundamental question of how electronic coherence can survive in biological surroundings. Here we show that the non-trivial spectral structures of protein fluctuations can generate non-equilibrium processes that lead to the spontaneous creation and sustenance of electronic coherence, even at physiological temperatures. Developing new advanced simulation tools to treat these effects, we provide a firm microscopic basis to successfully reproduce the experimentally observed coherence times in the Fenna–Matthews–Olson complex, and illustrate how detailed quantum modelling and simulation can shed further light on a wide range of other non-equilibrium processes which may be important in different photosynthetic systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The generic organization of the early stages of light-harvesting in natural photosynthesis.
Figure 2: Electronic coherence from the semiclassical model.
Figure 3: Numerical exact results of electronic coherence for cryogenic and physiological temperatures.
Figure 4: Spontaneous generation of excitonic coherence.

Similar content being viewed by others

References

  1. Blankenship, R. Molecular Mechanisms of Photosynthesis (Wiley-Blackwell, 2002).

    Book  Google Scholar 

  2. Van Amerongen, H., Valkunas, L. & van Grondelle, R. Photosynthetic Excitons (World Scientific, 2000).

    Book  Google Scholar 

  3. Scholes, G., Fleming, G., Olaya-Castro, A. & van Grondelle, R. Lessons from nature about solar light harvesting. Nature Chem. 3, 763–774 (2011).

    Article  ADS  Google Scholar 

  4. Engel, G. S. et al. Evidence for wavelike energy transfer through quantum coherence in photosynthetic complexes. Nature 446, 782–786 (2007).

    Article  ADS  Google Scholar 

  5. Panitchayangkoon, G. et al. Long-lived quantum coherence in photosynthetic complexes at physiological temperature. Proc. Natl Acad. Sci. USA 107, 12766–12770 (2010).

    Article  ADS  Google Scholar 

  6. Calhoun, T. et al. Quantum coherence enabled determination of the energy landscape in light-harvesting complex II. J. Phys. Chem. B 113, 16291–16295 (2009).

    Article  Google Scholar 

  7. Hayes, D. et al. Dynamics of electronic dephasing in the Fenna–Matthews–Olson complex. New J. Phys. 12, 065042 (2010).

    Article  ADS  Google Scholar 

  8. Collini, E. et al. Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature 463, 644–647 (2010).

    Article  ADS  Google Scholar 

  9. Mohseni, M., Rebentrost, P., Lloyd, S. & Aspuru-Guzik, A. Environment-assisted quantum walks in photosynthetic energy transfer. J. Chem. Phys. 129, 174106 (2008).

    Article  ADS  Google Scholar 

  10. Plenio, M. B. & Huelga, S. F. Dephasing-assisted transport: Quantum networks and biomolecules. New J. Phys. 10, 113019 (2008).

    Article  ADS  Google Scholar 

  11. Caruso, F., Chin, A. W., Datta, A., Huelga, S. F. & Plenio, M. B. Highly efficient energy excitation transfer in light-harvesting complexes: The fundamental role of noise-assisted transport. J. Chem. Phys. 131, 105106 (2009).

    Article  ADS  Google Scholar 

  12. Ishizaki, A., Calhoun, T., Schlau-Cohen, G. & Fleming, G. R. Quantum coherence and its interplay with protein environments in photosynthetic electronic energy transfer. Phys. Chem. Chem. Phys. 12, 7319–7337 (2010).

    Article  Google Scholar 

  13. Olaya-Castro, A., Lee, C., Olsen, F. & Johnson, N. Efficiency of energy transfer in a light-harvesting system under quantum coherence. Phys. Rev. B 78, 085115 (2008).

    Article  ADS  Google Scholar 

  14. Prior, J., Chin, A. W., Huelga, S. F. & Plenio, M. B. Efficient simulation of strong system-environment interactions. Phys. Rev. Lett. 105, 050404 (2010).

    Article  ADS  Google Scholar 

  15. Chin, A. W., Rivas, A., Huelga, S. F. & Plenio, M. B. Exact mapping between system-reservoir quantum models and semi-infinite discrete chains using orthogonal polynomials. J. Math. Phys. 51, 092109 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  16. Chin, A. W., Huelga, S. F. & Plenio, M. B. Chain representations of open quantum systems and their numerical simulation with time-adapative density matrix renormalisation group methods. Semiconduct. Semimet. 85, 115–143 (2011).

    Article  Google Scholar 

  17. Matsuzaki, S., Zazubovich, V., Rätsep, M., Hayes, J. & Small, G. Energy transfer kinetics and low energy vibrational structure of the three lowest energy Qy-states of the Fenna-Matthews-Olson antenna complex. J. Phys. Chem. B 104, 9564–9572 (2000).

    Article  Google Scholar 

  18. Wending, M. et al. Electron-vibrational coupling in the Fenna-Matthews-Olson complex of Prosthecochloris aestuarii determined by temperature-dependent absorption and fluorescence line-narrowing measurements. J. Phys. Chem. B 104, 5825–5831 (2000).

    Article  Google Scholar 

  19. Rätsep, M., Blankenship, R. E. & Small, G. J. Energy transfer and spectral dynamics of the three lowest energy Qy-states of the Fenna-Matthews-Olson antenna complex. J. Phys. Chem. B 103, 5736–5741 (1999).

    Article  Google Scholar 

  20. Rätsep, M. & Freiberg, A. Electron–phonon and vibronic couplings in the FMO bacteriochlorophyll a antenna complex studied by difference fluorescence line narrowing. J. Lumin. 127, 251–259 (2007).

    Article  Google Scholar 

  21. Pachón, P. A. & Brumer, P. The physical basis for long-lived electronic coherence in photosynthetic light harvesting systems. J. Phys. Chem. Lett. 2, 2728–2732 (2011).

    Article  Google Scholar 

  22. Kreisbeck, C. & Kramer, T. Long-lived electronic coherence in dissipative exciton-dynamics of light-harvesting complexes. J. Phys. Chem. Lett. 3, 2828–2833 (2012).

    Article  Google Scholar 

  23. Scully, M. O., Chaplin, K. R., Dorfman, E., Kim, M. B. & Svidzinsky, A. Quantum heat engine power can be increased by noise-induced coherence. Proc. Natl Acad. Sci. USA 108, 15097–15100 (2011).

    Article  ADS  Google Scholar 

  24. Plenio, M. B. & Huelga, S. F. Entangled light from white noise. Phys. Rev. Lett. 88, 197901 (2002).

    Article  ADS  Google Scholar 

  25. Eisert, J., Plenio, M. B., Bose, S. & Hartley, J. Towards quantum entanglement in nanoelectromechanical devices. Phys. Rev. Lett. 93, 190402 (2004).

    Article  ADS  Google Scholar 

  26. Huelga, S. F. & Plenio, M. B. Stochastic resonance phenomena in quantum many-body systems. Phys. Rev. Lett. 98, 170601 (2007).

    Article  ADS  Google Scholar 

  27. Hartmann, L., Dür, W. & Briegel, H-J. Entanglement and its dynamics in open, dissipative systems. New J. Phys. 9, 230 (2007).

    Article  ADS  Google Scholar 

  28. Cai, J. M., Briegel, H. J. & Popescu, S. Dynamic entanglement in oscillating molecules and potential biological implications. Phys. Rev. E 82, 021921 (2010).

    Article  ADS  Google Scholar 

  29. Semião, F. L., Furuya, K. & Milburn, G. J. Vibration-enhanced quantum transport. New J. Phys. 12, 083033 (2010).

    Article  ADS  Google Scholar 

  30. Sarovar, M., Cheng, Y. & Whaley, K. Environmental correlation effects on excitation energy transfer in photosynthetic light harvesting. Phys. Rev. E 83, 011906 (2011).

    Article  ADS  Google Scholar 

  31. Chin, A. W., Huelga, S. F. & Plenio, M. B. Coherence and decoherence in biological systems: Principles of noise-assisted transport and the origin of long-lived coherences. Phil. Trans. Act. R. Soc. A 370, 3638–3657 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  32. Caycedo-Soler, F., Chin, A. W., Almeida, J., Huelga, S. F. & Plenio, M. B. The nature of the low energy band of the Fenna-Matthews-Olson complex: Vibronic signatures. J. Chem. Phys. 136, 155102 (2012).

    Article  ADS  Google Scholar 

  33. Christensson, N., Kauffmann, H., Pullerits, T. & Mancal, T. Origin of long-lived coherences in light-harvesting complexes. J. Phys. Chem. B 116, 7449–7454 (2012).

    Article  Google Scholar 

  34. Novoderezhkin, V. I., Yakovlev, A. G., van Grondelle, R. & Shuvalov, V. A. Coherent nuclear and electronic dynamics in primary charge separation in photosynthetic reaction centers: A redfield theory approach. J. Chem. Phys. B 108, 7445–7457 (2004).

    Article  Google Scholar 

  35. Adolphs, J. & Renger, T. How proteins trigger excitation energy transfer in the fmo complex of green sulfur bacteria. Biophys. J. 91, 2778–2797 (2006).

    Article  ADS  Google Scholar 

  36. Louwve, R. J. W. & Aartsma, T. J. On the nature of energy transfer at low temperatures in the bchl a pigment-protein complex of green sulfur bacteria. J. Chem. Phys. B 101, 7221–7226 (1997).

    Article  Google Scholar 

  37. Hildner, R., Brinks, D. & van Hulst, N. Femtosecond coherence and quantum control of single molecules at room temperature. Nature Phys. 7, 172–177 (2010).

    Article  ADS  Google Scholar 

  38. Theiss, C. et al. Pigment-pigment and pigment-protein interactions in recombinant water-soluble chlorophyll proteins (WSCP) from cauliflower. J. Phys. Chem. B 111, 13325–13335 (2007).

    Article  Google Scholar 

  39. Panitchayangkoon, G. et al. Direct evidence of quantum transport in photosynthetic light-harvesting complexes. Proc. Natl Acad. Sci. USA 108, 20908–20912 (2011).

    Article  ADS  Google Scholar 

  40. Collini, E. & Scholes, G. Coherent intrachain energy migration in a conjugated polymer at room temperature. Science 323, 369–373 (2009).

    Article  ADS  Google Scholar 

  41. Collini, E. & Scholes, G. Electronic and vibrational coherences in resonance energy transfer along MEH-PPV chains at room temperature. J. Phys. Chem. A 113, 4223–4241 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Alexander von Humboldt-Foundation, the EU STREP project PICC and the EU Integrated Project Q-ESSENCE. A.W.C. acknowledges support from the Winton Programme for the Physics of Sustainability. J.P. was supported by Ministerio de Ciencia e Innovación Project No. FIS2009-13483-C02-02 and the Fundación Séneca Project No. 11920/PI/09-j. We acknowledge the bwGRiD project (http://www.bw-grid.de) for the computational resources. Aspects of this work have benefited from discussions with J. Almeida, A. G. Dijkstra, D. Hayes, J. Caram, G. S. Engel and R. van Grondelle.

Author information

Authors and Affiliations

Authors

Contributions

S.F.H. and M.B.P. designed the research with input from A.W.C.; A.W.C. and F.C-S. carried out the analytical calculations with advice from S.F.H. and M.B.P.; J.P. and R.R. developed the numerical codes and carried out the numerical simulations with guidance from A.W.C. and M.B.P. All authors discussed the results. S.F.H. and M.B.P. led the project. A.W.C., F.C.S., S.F.H. and M.B.P. wrote the manuscript with input of all authors.

Corresponding author

Correspondence to M. B. Plenio.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 543 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chin, A., Prior, J., Rosenbach, R. et al. The role of non-equilibrium vibrational structures in electronic coherence and recoherence in pigment–protein complexes. Nature Phys 9, 113–118 (2013). https://doi.org/10.1038/nphys2515

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2515

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing