Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The space group classification of topological band-insulators

Abstract

Topological band-insulators (TBIs) are bulk insulating materials, which in the presence of time-reversal symmetry feature topologically protected metallic states on their surface or edge. They have recently been discovered in two- and three-dimensional materials with a strong spin–orbit coupling. These unusual states of quantum matter may host Majorana fermions and provide the condensed-matter realization of the exotic theta-vacuum. The existing classification of TBIs departs from time-reversal symmetry, but the role of the crystal-lattice symmetries in the physics of these topological states has remained elusive. Here we provide the classification of TBIs protected not only by time-reversal, but also by crystalline symmetries. We find three broad classes of topological states: Γ states robust against general time-reversal invariant perturbations; translationally active states protected from elastic scattering, but susceptible to topological crystalline disorder; valley topological insulators sensitive to the effects of non-topological and crystalline disorder. These three classes give rise to 18 different two-dimensional, and, at least 70 three-dimensional TBIs, opening up a route for the systematic search for new types of TBIs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phase diagram of the extended MB tight-binding model.
Figure 2: Illustration of the role of lattice symmetries in the classification of topological states.

Similar content being viewed by others

References

  1. Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article  ADS  Google Scholar 

  2. Qi, X. L. & Zhang, S. C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

    Article  ADS  Google Scholar 

  3. Thouless, D. J., Kohmoto, M., Nightingale, M. P. & den Nijs, M. Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405–408 (1982).

    ADS  Google Scholar 

  4. Kane, C. L. & Mele, E. J. Z2 topological order and the quantum spin Hall effect. Phys. Rev. Lett. 95, 146802 (2005).

    Article  ADS  Google Scholar 

  5. Moore, J. E. & Balents, L. Topological invariants of time–reversal-invariant band structures. Phys. Rev. B 75, 121306 (2007).

    Article  ADS  Google Scholar 

  6. Fu, L. & Kane, C. L. Time reversal polarization and a Z2 adiabatic spin pump. Phys. Rev. B 74, 195312 (2006).

    Article  ADS  Google Scholar 

  7. Fu, L. & Kane, C. L. Topological insulators in three dimensions. Phys. Rev. Lett. 98, 106803 (2007).

    Article  ADS  Google Scholar 

  8. Fu, L. & Kane, C. L. Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. Phys. Rev. Lett. 100, 096407 (2008).

    Article  ADS  Google Scholar 

  9. Li, R. D., Wang, J., Qi, X. L. & Zhang, S. C. Dynamical axion field in topological magnetic insulators. Nature Phys. 6, 284–288 (2010).

    Article  ADS  Google Scholar 

  10. Bernevig, B. A., Hughes, T. L. & Zhang, S. C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006).

    Article  ADS  Google Scholar 

  11. Zhang, H. et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nature Phys. 5, 438–442 (2009).

    Article  ADS  Google Scholar 

  12. König, M. et al. Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007).

    Article  ADS  Google Scholar 

  13. Hsieh, D. et al. A topological Dirac insulator in a quantum spin Hall phase. Nature 452, 970–974 (2008).

    Article  ADS  Google Scholar 

  14. Hsieh, D. et al. Observation of unconventional quantum spin textures in topological insulators. Science 323, 919–922 (2009).

    Article  ADS  Google Scholar 

  15. Xia, Y. et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nature Phys. 5, 398–402 (2009).

    Article  ADS  Google Scholar 

  16. Chen, Y. L. et al. Experimental realization of a three-dimensional topological insulator, Bi2Te3 . Science 325, 178–181 (2009).

    Article  ADS  Google Scholar 

  17. Schnyder, A. P., Ryu, S., Furusaki, A. & Ludwig, A. W. W Classification of topological insulators and superconductors in three spatial dimensions. Phys. Rev. B 78, 195125 (2008).

    Article  ADS  Google Scholar 

  18. Ryu, S., Schnyder, A. P., Furusaki, A. & Ludwig, A. W. W. Topological insulators and superconductors: ten-fold way and dimensional hierarchy. New J. Phys. 12, 065010 (2010).

    Article  ADS  Google Scholar 

  19. Kitaev, A. Periodic table for topological insulators and superconductors. AIP Conf. Proc. 1134, 22–30 (2009).

    Article  ADS  Google Scholar 

  20. Ran, Y., Zhang, Y. & Vishwanath, A. One-dimensional topologically protected modes in topological insulators with lattice dislocations. Nature Phys. 5, 298–303 (2009).

    Article  ADS  Google Scholar 

  21. Fu, L. & Kane, C. L. Topological insulators with inversion symmetry. Phys. Rev. B 76, 045302 (2007).

    Article  ADS  Google Scholar 

  22. Teo, J. C. Y., Fu, L. & Kane, C. L. Surface states and topological invariants in three-dimensional topological insulators: Application to Bi1−xSbx . Phys. Rev. B 78, 045426 (2008).

    Article  ADS  Google Scholar 

  23. Fu, L. Topological crystalline insulators. Phys. Rev. Lett. 106, 106802 (2011).

    Article  ADS  Google Scholar 

  24. Hsieh, T. H., Lin, H., Liu, J., Duan, W., Bansil, A. & Fu, L. Topological crystalline insulators in the SnTe material class. Nature Commun. 3, 982 (2012).

    Article  ADS  Google Scholar 

  25. Hughes, T. L., Prodan, E. & Bernevig, B. A. Inversion-symmetric topological insulators. Phys. Rev. B 83, 245132 (2011).

    Article  ADS  Google Scholar 

  26. Turner, A. M., Zhang, Y., Mong, R. S. K. & Vishwanath, A. Quantized response and topology of magnetic insulators with inversion symmetry. Phys. Rev. B 85, 165120 (2012).

    Article  ADS  Google Scholar 

  27. Juričić, V., Mesaros, A., Slager, R.-J. & Zaanen, J. Universal probes of two-dimensional topological insulators: dislocation and π flux. Phys. Rev. Lett. 108, 106403 (2012).

    Article  ADS  Google Scholar 

  28. Kane, C. L. & Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005).

    Article  ADS  Google Scholar 

  29. Zhang, X., Zhang, H., Wang, J., Felser, C. & Zhang, S. C. Actinide topological insulator materials with strong interaction. Science 335, 1464–1466 (2012).

    Article  ADS  Google Scholar 

  30. Tanaka, Y. et al. Experimental realization of a topological crystalline insulator in SnTe. Nature Phys. 8, 800–803 (2012).

    Article  ADS  Google Scholar 

  31. Xu, S. Y. et al. Observation of a topological crystalline insulator phase and topological phase transition in Pb1−xSnxTe. Nature Commun. 3, 1192 (2012).

    Article  ADS  Google Scholar 

  32. Dziawa, P. et al. Topological crystalline insulator states in Pb1−xSnxSe. Nature Mater. 11, 1023–1027 (2012).

    Article  ADS  Google Scholar 

  33. Dresselhaus, M. S., Dresselhaus, G. & Jorio, A. Group Theory Application to the Physics of Condensed Matter (Springer, 2008).

    MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the Dutch Foundation for Fundamental Research on Matter (FOM). V.J. acknowledges the support of the Netherlands Organization for Scientific Research (NWO).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed extensively to the work presented in this paper.

Corresponding author

Correspondence to Vladimir Juričić.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 46413 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slager, RJ., Mesaros, A., Juričić, V. et al. The space group classification of topological band-insulators. Nature Phys 9, 98–102 (2013). https://doi.org/10.1038/nphys2513

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2513

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing