Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Supercollision cooling in undoped graphene


Carrier mobility in solids is generally limited by electron-impurity or electron–phonon scattering, depending on the most frequently occurring event. Three-body collisions between carriers and both phonons and impurities are rare; they are denoted supercollisions. Elusive in electronic transport they should emerge in relaxation processes as they allow for larger energy transfers. This is the case in undoped graphene, where the small Fermi surface drastically restricts the allowed phonon energy in ordinary collisions. Using electrical heating and sensitive noise thermometry we report on supercollision cooling in diffusive monolayer graphene. At low carrier density and high phonon temperature the Joule power P obeys a PTe3 law as a function of electronic temperature Te. It overrules the linear law expected for ordinary collisions which has recently been observed in resistivity measurements. The cubic law is characteristic of supercollisions and departs from the Te4 dependence recently reported for doped graphene below the Bloch–Grüneisen temperature. These supercollisions are important for applications of graphene in bolometry and photo-detection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tunability of the Bloch–Grüneisen temperature and noise thermometry set-up.
Figure 2: Electron temperature in graphene as a function of supplied Joule power.
Figure 3: Supercollision cubic law.
Figure 4: SC coupling constant A as a function of carrier density.

Similar content being viewed by others


  1. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    Article  ADS  Google Scholar 

  2. Das Sarma, S., Adam, S., Hwang, E. H. & Rossi, E. Electronic transport in two dimensional graphene. Rev. Mod. Phys. 83, 407–470 (2012).

    Article  ADS  Google Scholar 

  3. Efetov, D. K. & Kim, P. Controlling electron–phonon interactions in graphene at ultrahigh carrier densities. Phys. Rev. Lett. 105, 256805 (2010).

    Article  ADS  Google Scholar 

  4. Song, J. C. W., Reizer, M. Y. & Levitov, L. S. Disorder-assisted electron–phonon scattering and cooling pathways in graphene. Phys. Rev. Lett. 109, 106602 (2012).

    Article  ADS  Google Scholar 

  5. Bistritzer, R. & MacDonald, A. H. Electronic cooling in graphene. Phys. Rev. Lett. 102, 206410 (2009).

    Article  ADS  Google Scholar 

  6. Tse, W-K. & Das Sarma, S. Energy relaxation of hot Dirac fermions in graphene. Phys. Rev. B 79, 235406 (2009).

    Article  ADS  Google Scholar 

  7. Kubakaddi, S. S. Interaction of massless Dirac electrons with acoustic phonons in graphene at low temperatures. Phys. Rev. B 79, 075417 (2009).

    Article  ADS  Google Scholar 

  8. Viljas, J. K. & Heikkilä, T. T. Electron–phonon heat transfer in monolayer and bilayer graphene. Phys. Rev. B 81, 245404 (2010).

    Article  ADS  Google Scholar 

  9. Chaste, J. et al. Thermal shot noise in top-gated single carbon nanotube field effect transistors. Appl. Phys. Lett. 96, 192103 (2010).

    Article  ADS  Google Scholar 

  10. Wu, F., Virtanen, P., Andresen, S., Plaçais, B. & Hakonen, P. J. Electron–phonon coupling in single-walled carbon nanotubes determined by shot noise. Appl. Phys. Lett. 97, 262115 (2010).

    Article  ADS  Google Scholar 

  11. Fay, A. & Tomi, et al. Shot noise and conductivity at high bias in bilayer graphene: Signatures of electron-optical phonon coupling. Phys. Rev. B 84, 245427 (2011).

    Article  ADS  Google Scholar 

  12. Betz, A. C. et al. Hot electron cooling by acoustic phonons in graphene. Phys. Rev. Lett. 109, 056805 (2012).

    Article  ADS  Google Scholar 

  13. Baker, A. M. R, Alexander-Webber, J. A., Altebaeumer, T. & Nicholas, R. J. Energy relaxation for hot Dirac fermions in graphene and breakdown of the quantum Hall effect. Phys. Rev. B 85, 115403 (2012).

    Article  ADS  Google Scholar 

  14. Wellstood, F. C., Urbina, C. & Clarke, J. Hot-electron effects in metals. Phys. Rev. B 49, 5942–5955 (1994).

    Article  ADS  Google Scholar 

  15. Balandin, A. A. Thermal properties of graphene and nanostructured carbon materials. Nature Mater. 10, 569–581 (2011).

    Article  ADS  Google Scholar 

  16. Bolotin, K. I., Sikes, K. J., Hone, J., Stormer, H. L. & Kim, P. Temperature-dependent transport in suspended graphene. Phys. Rev. Lett. 101, 096802 (2008).

    Article  ADS  Google Scholar 

  17. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nature Nanotech. 5, 722–726 (2010).

    Article  ADS  Google Scholar 

  18. Low, T., Perebeinos, V., Kim, R., Freitag, M. & Avouris, P. Cooling of photoexcited carriers in graphene by internal and substrate phonons. Phys. Rev. B 86, 045413 (2012).

    Article  ADS  Google Scholar 

  19. Price, A. S., Hornett, S. M., Shytov, A. V., Hendry, E. & Horsell, D. W. Nonlinear resistivity and heat dissipation in monolayer graphene. Phys. Rev. B 85, 161411 (2012).

    Article  ADS  Google Scholar 

  20. Gabor, N. M. et al. Hot carrier assisted intrinsic photoresponse in graphene. Science 334, 648–652 (2011).

    Article  ADS  Google Scholar 

  21. Vora, H., Kumaravadivel, P., Nielsen, B. & Du, X. Bolometric response in graphene based superconducting tunnel junctions. Appl. Phys. Lett. 100, 153507 (2012).

    Article  ADS  Google Scholar 

  22. Yan, J. et al. Dual-gated bilayer graphene hot-electron bolometer. Nature Nanotech. 7, 472–478 (2012).

    Article  ADS  Google Scholar 

  23. Fong, K. C. & Schwab, K. C. Ultrasensitive and wide-bandwidth thermal measurements of graphene at low temperatures. Phys. Rev. X 2, 031006 (2012).

    Google Scholar 

  24. Graham, M. W., Shi, S-F., Ralph, D. C., Park, J. & McEuen, P. L. Photocurrent measurements of supercollision cooling in graphene. Nature Phys. (2012).

  25. Schneider, G. F., Calado, V. E., Zandbergen, H., Vandersypen, L. M. K. & Dekker, C. Wedging transfer of nanostructures. Nano Lett. 10, 1912–1916 (2010).

    Article  ADS  Google Scholar 

  26. Pallecchi, E. et al. Graphene microwave transistors on sapphire substrate. Appl. Phys. Lett. 99, 113502 (2011).

    Article  ADS  Google Scholar 

  27. Hooge, F. N., Kleinpenning, T. G. M. & Vandamme, L. K. J. Experimental studies on 1/f noise. Rep. Prog. Phys. 44, 479–532 (1981).

    Article  ADS  Google Scholar 

Download references


The research has been supported by the contracts ANR-2010-BLAN-MIGRAQUEL, SBPC and Cnano-2011 Topin’s and Grav’s.

Author information

Authors and Affiliations



A.C.B. and S.H.J. conducted the noise measurements; R.F. performed the calculations of the supercollisions; E.P. participated in the early stage of the experiment. G.F. and J-M.B. supported the experiments; S.H.J. and B.P. wrote the paper; and B.P. initiated the experiment.

Corresponding authors

Correspondence to S. H. Jhang or B. Plaçais.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Betz, A., Jhang, S., Pallecchi, E. et al. Supercollision cooling in undoped graphene. Nature Phys 9, 109–112 (2013).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing