Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A wide-bandgap metal–semiconductor–metal nanostructure made entirely from graphene


Present methods for producing semiconducting–metallic graphene networks suffer from stringent lithographic demands, process-induced disorder in the graphene, and scalability issues. Here we demonstrate a one-dimensional metallic–semiconducting–metallic junction made entirely from graphene. Our technique takes advantage of the inherent, atomically ordered, substrate–graphene interaction when graphene is grown on SiC, in this case patterned SiC steps, and does not rely on chemical functionalization or finite-size patterning. This scalable bottom-up approach allows us to produce a semiconducting graphene strip whose width is precisely defined to within a few graphene lattice constants, a level of precision beyond modern lithographic limits, and which is robust enough that there is little variation in the electronic band structure across thousands of ribbons. The semiconducting graphene has a topographically defined few-nanometre-wide region with an energy gap greater than 0.5 eV in an otherwise continuous metallic graphene sheet.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The experimental geometry of measuring graphene on SiC trenches.
Figure 2: An ARPES view of the band structure of graphene grown on the sides of 12-nm-deep SiC trenches.
Figure 3: Different views of the nearly 1D gap semiconducting bent graphene.
Figure 4: Details of the facet sidewall graphene band structure near the K-point.
Figure 5: Local band structure changes on the sidewall facets.

Similar content being viewed by others


  1. Berger, C. et al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 108, 19912–19196 (2004).

    Article  Google Scholar 

  2. Wakabayashi, K., Fujita, M., Ajiki, H. & Sigrist, M. Electronic and magnetic properties of nanographite ribbons. Phys. Rev. B 59, 8271–8282 (1999).

    Article  ADS  Google Scholar 

  3. Nakada, K., Fujita, M., Dresselhaus, G. & Dresselhaus, M. S. Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys. Rev. B 54, 17954–17961 (1996).

    Article  ADS  Google Scholar 

  4. Brey, L. & Fertig, H. A. Electronic states of graphene nanoribbons studied with the Dirac equation. Phys. Rev. B 23, 235411 (2006).

    Article  ADS  Google Scholar 

  5. Son, Y-W., Cohen, M. L. & Louie, S. G. Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97, 216803 (2006).

    Article  ADS  Google Scholar 

  6. Han, M. Y., Özyilmaz, B., Zhang, Y. & Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007).

    Article  ADS  Google Scholar 

  7. Han, M. Y., Brant, J. C. & Kim, P. Electron transport in disordered graphene nanoribbons. Phys. Rev. Lett. 104, 056801 (2010).

    Article  ADS  Google Scholar 

  8. Jiao, L., Zhang, L., Wang, X., Diankov, G. & Dai, H. Narrow graphene nanoribbons from carbon nanotubes. Nature 458, 877–880 (2009).

    Article  ADS  Google Scholar 

  9. Jiao, L., Wang, X., Diankov, G., Wang, H. & Dai, H. Facile synthesis of high-quality graphene nanoribbons. Nature Nanotech. 5, 321–325 (2010).

    Article  ADS  Google Scholar 

  10. Oostinga, J. B., Sacépè, B., Craciun, M. F. & Morpurgo, A. F. Magnetotransport through graphene nanoribbons. Phys. Rev. B 81, 193408 (2010).

    Article  ADS  Google Scholar 

  11. Pereira, V. M., Castro Neto, A. H., Liang, H. Y. & Mahadevan, L. Geometry, mechanics, and electronics of singular structures and wrinkles in graphene. Phys. Rev. Lett. 105, 156603 (2010).

    Article  ADS  Google Scholar 

  12. Low, T., Guinea, F. & Katsnelson, M. I. Gaps tunable by electrostatic gates in strained graphene. Phys. Rev. B 83, 195436 (2011).

    Article  ADS  Google Scholar 

  13. Pereira, V. M., Castro Neto, A. H. & Peres, N. M. R. Tight-binding approach to uniaxial strain in graphene. Phys. Rev. B 80, 045401 (2009).

    Article  ADS  Google Scholar 

  14. Verberck, B., Partoens, B., Peeters, F. M. & Trauzettel, B. Strain-induced band gaps in bilayer graphene. Phys. Rev. B 85, 125403 (2012).

    Article  ADS  Google Scholar 

  15. Hass, J., de Heer, W. A. & Conrad, E. H. The growth and morphology of epitaxial multilayer graphene. J. Phys. Condens Matter 20, 323202–323212 (2008).

    Article  Google Scholar 

  16. Norimatsu, W. & Kusunoki, M. Formation process of graphene on SiC (0001). Physica E 42, 691–694 (2010).

    Article  ADS  Google Scholar 

  17. Sprinkle, M. et al. Scalable templated growth of graphene nanoribbons on SiC. Nature Nanotech. 5, 727–731 (2010).

    Article  ADS  Google Scholar 

  18. Hicks, J., Shepperd, K., Wang, F. & Conrad, E. H. The structure of graphene grown on the SiC surface. J. Phys. D 45, 154002 (2012).

    Article  ADS  Google Scholar 

  19. Riedl, C., Coletti, C. & Starke, U. Structural and electronic properties of epitaxial graphene on SiC (0001): A review of growth, characterization, transfer doping and hydrogen intercalation. J. Phys. D 43, 374009 (2010).

    Article  Google Scholar 

  20. Choi, S-M., Jhi, S-H. & Son, Y-W. Controlling energy gap of bilayer graphene by strain. Nano Lett. 10, 3486–3489 (2010).

    Article  ADS  Google Scholar 

  21. Freitag, F., Trbovic, J., Weiss, M. & Schönenberger, C. Spontaneously gapped ground state in suspended bilayer graphene. Phys. Rev. Lett. 108, 076602 (2012).

    Article  ADS  Google Scholar 

  22. Ni, Z. H. et al. Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening. ACS Nano 2, 2301–2305 (2008).

    Article  Google Scholar 

  23. Wong, J-H., Wu, B-R. & Lin, M-F. Strain effect on the electronic properties of single layer and bilayer graphene. J. Phys. Chem. C 116, 8271–8277 (2012).

    Article  Google Scholar 

  24. Wakabayashi, K., Sasaki, K.-ichi, Nakanishi, T. & Enoki, T. Electronic states of graphene nanoribbons and analytical solutions. Sci. Technol. Adv. Mater. 11, 054504 (2010).

    Article  Google Scholar 

  25. Ji, S-H. et al. Atomic-scale transport in epitaxial graphene. Nature Mater. 11, 114–119 (2012).

    Article  ADS  Google Scholar 

  26. Chamon, C. Solitons in carbon nanotubes. Phys. Rev. B 62, 2806–2812 (2000).

    Article  ADS  Google Scholar 

  27. Ribeiro, R. M., Pereira, V. M., Peres, N. M. R., Briddon, P. R. & Castro Neto, A. H. Strained graphene: Tight-binding and density functional calculations. New J. Phys. 11, 115002–115012 (2009).

    Article  ADS  Google Scholar 

  28. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    Article  ADS  Google Scholar 

  29. Emtsev, K. V., Speck, F., Seyller, Th., Ley, L. & Riley, J. D. Interaction, growth, and ordering of epitaxial graphene on SiC {0001} surfaces: A comparative photoelectron spectroscopy study. Phys. Rev. B 77, 155303 (2008).

    Article  ADS  Google Scholar 

  30. Son, Y-W., Choi, S-M., Hong, Y.P., Woo, S. & Jhi, S-H. Electronic topological transition in sliding bilayer graphene. Phys. Rev. B 84, 155410 (2011).

    Article  ADS  Google Scholar 

  31. de Heer, W. A. et al. Large area and structured epitaxial graphene produced by confinement controlled sublimation of silicon carbide. Proc. Natl Acad. Sci. USA 108, 16900–16905 (2011).

    Article  ADS  Google Scholar 

Download references


We wish to thank A. Zangwill for many useful discussions. This research was supported by the W. M. Keck Foundation, the Partner University Fund from the Embassy of France and the NSF under Grant Nos DMR-0820382 and DMR-1005880. We also wish to acknowledge the SOLEIL synchrotron radiation facilities and the Cassiopée beamline. J. Hicks also wishes to acknowledge support from the NSF-GRFP under Grant No. DGE-0644493.

Author information

Authors and Affiliations



E.H.C. supervised the project, designed and carried out the experiment, analysed data and wrote the manuscript. J.H. and A.T. carried out the experiment, analysed data and edited the manuscript. A.T-I. organized the ARPES experiments and recorded data. C.B. and M.S.N. carried out the experiment and edited the manuscript. K.S., F.B. and P.L.F. helped run the ARPES experiments. F.W. analysed the data and edited the manuscript. J.P. helped prepare samples. W.A.d.H. and J.K. provided the theoretical band modelling and edited the paper.

Corresponding author

Correspondence to E. H. Conrad.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 448 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hicks, J., Tejeda, A., Taleb-Ibrahimi, A. et al. A wide-bandgap metal–semiconductor–metal nanostructure made entirely from graphene. Nature Phys 9, 49–54 (2013).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing