Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Quantum biology

Abstract

Recent evidence suggests that a variety of organisms may harness some of the unique features of quantum mechanics to gain a biological advantage. These features go beyond trivial quantum effects and may include harnessing quantum coherence on physiologically important timescales. In this brief review we summarize the latest results for non-trivial quantum effects in photosynthetic light harvesting, avian magnetoreception and several other candidates for functional quantum biology. We present both the evidence for and arguments against there being a functional role for quantum coherence in these systems.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: A quantum machine for efficient light-energy harvesting.
Figure 2: The avian quantum compass.

References

  1. 1

    Schrödinger, E. What is Life? (Cambridge Univ. Press, 1992).

    Book  Google Scholar 

  2. 2

    Davies, P. C. W. Quantum Aspects of Life (Imperial College Press, 2008).

    Google Scholar 

  3. 3

    Longuet-Higgins, H. C. Quantum mechanics and biology. Biophys. J. 2, 207–215 (1962).

    Article  Google Scholar 

  4. 4

    Wolynes, P. G. Some quantum weirdness in physiology. Proc. Natl Acad. Sci. USA 106, 17247–17248 (2009).

    Article  ADS  Google Scholar 

  5. 5

    Tegmark, M. Importance of quantum decoherence in brain processes. Phys. Rev. E 61, 4194–4206 (2000).

    Article  ADS  Google Scholar 

  6. 6

    McKemmish, L. K., Reimers, J. R., McKenzie, R. H., Mark, A. E. & Hush, N. S. Penrose–Hameroff orchestrated objective-reduction proposal for human consciousness is not biologically feasible. Phys. Rev. E 80, 021912 (2009).

    Article  ADS  Google Scholar 

  7. 7

    Maeda, K. et al. Magnetically sensitive light-induced reactions in cryptochrome are consistent with its proposed role as a magnetoreceptor. Proc. Natl Acad. Sci. USA 109, 4774–4779 (2012).

    Article  ADS  Google Scholar 

  8. 8

    Van Amerongen, H., Valkunas, L. & van Grondelle, R. Photosynthetic excitons (World Scientific, 2000).

    Book  Google Scholar 

  9. 9

    Blankenship, R. E. Molecular Mechanisms of Photosynthesis (Blackwell Science, 2002).

    Book  Google Scholar 

  10. 10

    Cogdell, R. J., Gardiner, A. T., Hashimoto, H. & Brotosudarmo, T. H. P. A comparative look at the first few milliseconds of the light reactions of photosynthesis. Photochem. Photobiol. Sci. 7, 1150–1158 (2008).

    Article  Google Scholar 

  11. 11

    Cogdell, R. J., Gall, A. & Köhler, J. The architecture and function of the light-harvesting apparatus of purple bacteria: From single molecules to in vivo membranes. Quart. Rev. Biophys. 39, 227–324 (2006).

    Article  Google Scholar 

  12. 12

    Engel, G. S. et al. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446, 782–786 (2007).

    Article  ADS  Google Scholar 

  13. 13

    Ishizaki, A., Calhoun, T. R., Schlau-Cohen, G. S. & Fleming, G. R. Quantum coherence and its interplay with protein environments in photosynthetic electronic energy transfer. Phys. Chem. Chem. Phys. 12, 7319–7337 (2010).

    Article  Google Scholar 

  14. 14

    Lee, H., Cheng, Y-C. & Fleming, G. R. Coherence dynamics in photosynthesis: Protein protection of excitonic coherence. Science 316, 1462–1465 (2007).

    Article  ADS  Google Scholar 

  15. 15

    Collini, E. et al. Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature 463, 644–648 (2010).

    Article  ADS  Google Scholar 

  16. 16

    Panitchayangkoon, G. et al. Long-lived quantum coherence in photosynthetic complexes at physiological temperature. Proc. Natl Acad. Sci. USA 107, 12766–12770 (2010).

    Article  ADS  Google Scholar 

  17. 17

    Panitchayangkoon, G. et al. Direct evidence of quantum transport in photosynthetic light-harvesting complexes. Proc. Natl Acad. Sci. USA 108, 20908–20912 (2011).

    Article  ADS  Google Scholar 

  18. 18

    De Liberato, S. & Ueda, M. Carnot’s theorem for nonthermal stationary reservoirs. Phys. Rev. E 84, 051122 (2011).

    Article  ADS  Google Scholar 

  19. 19

    Ishizaki, A. & Fleming, G. R. Theoretical examination of quantum coherence in a photosynthetic system at physiological temperature. Proc. Natl Acad. Sci. USA 106, 17255–17260 (2009).

    Article  ADS  Google Scholar 

  20. 20

    Yen, T-C. & Cheng, Y-C. Electronic coherence effects in photosynthetic light harvesting. Proc. Chem. 3, 211–221 (2011).

    Article  Google Scholar 

  21. 21

    Fleming, G. R., Scholes, G. D. & Cheng, Y-C. Quantum effects in biology. Proc. Chem. 3, 38–57 (2011).

    Article  Google Scholar 

  22. 22

    Scholes, G. D., Fleming, G. R., Olaya-Castro, A. & van Grondelle, R. Lessons from nature about solar light harvesting. Nature Chem. 3, 763–774 (2011).

    Article  ADS  Google Scholar 

  23. 23

    Cheng, Y-C. & Fleming, G. R. Dynamics of light harvesting in photosynthesis. Annu. Rev. Phys. Chem. 60, 241–262 (2009).

    Article  ADS  Google Scholar 

  24. 24

    Renger, T. Theory of excitation energy transfer: From structure to function. Photosynth. Res. 102, 471–485 (2009).

    Article  Google Scholar 

  25. 25

    Adolphs, J. & Renger, T. How proteins trigger excitation energy transfer in the FMO complex of green sulphur bacteria. Biophysical J. 91, 2778–2797 (2006).

    Article  ADS  Google Scholar 

  26. 26

    Plenio, M. B. & Huelga, S. F. Dephasing-assisted transport: Quantum networks and biomolecules. New J. Phys. 10, 113019 (2008).

    Article  ADS  Google Scholar 

  27. 27

    Mohseni, M., Robentrost, P., Lloyd, S. & Aspuru-Guzik, A. Environment-assisted quantum walks in photosynthetic energy transfer. J. Chem. Phys. 129, 176106 (2008).

    Article  Google Scholar 

  28. 28

    Gaab, K. M. & Bardeen, C. J. The effects of connectivity, coherence, and trapping on energy transfer in simple light-harvesting systems studied using the Haken–Strobl model with diagonal disorder. J. Chem. Phys. 121, 7813–7820 (2004).

    Article  ADS  Google Scholar 

  29. 29

    Lee, H., Cheng, Y-C. & Fleming, G. R. Quantum coherence accelerating photosynthetic energy transfer. Springer Ser. Chem. Phys. 92, 607–609 (2009).

    Article  Google Scholar 

  30. 30

    Rebentrost, P., Mohseni, M., Kassal, I., Lloyd, S. & Aspuru-Guzik, A. Environment-assisted quantum transport. New J. Phys. 11, 033003 (2009).

    Article  ADS  Google Scholar 

  31. 31

    Ghosh, P. K., Smirnov, A. Y. & Nori, F. Quantum effects in energy and charge transfer in an artificial photosynthetic complex. J. Chem. Phys. 134, 244103 (2011).

    Article  ADS  Google Scholar 

  32. 32

    Cheng, Y-C., Engel, G. S. & Fleming, G. R. Elucidation of population and coherence dynamics using cross-peaks in two-dimensional electronic spectroscopy. Chem. Phys. 341, 285–295 (2007).

    Article  Google Scholar 

  33. 33

    Jang, S. Theory of multichromophoric coherent resonance energy transfer: A polaronic quantum master equation approach. J. Chem. Phys. 135, 034105 (2011).

    Article  ADS  Google Scholar 

  34. 34

    Jang, S., Cheng, Y-C., Reichman, D. R. & Eaves, J. D. Theory of coherent resonance energy transfer. J. Chem. Phys. 129, 101104 (2008).

    Article  ADS  Google Scholar 

  35. 35

    Nalbach, P., Ishizaki, A., Fleming, G. R. & Thorwart, M. Iterative path-integral algorithm versus cumulant time-nonlocal master equation approach for dissipative biomolecular exciton transport. New J. Phys. 13, 063040 (2011).

    Article  ADS  Google Scholar 

  36. 36

    Ritschel, G., Roden, J., Strunz, W. T., Aspuru-Guzik, A. & Eisfeld, A. On the suppression of quantum oscillations and the choice of site energies in electronic excitation transfer in the Fenna–Matthews–Olson trimer. J. Phys. Chem. Lett. 2, 2912–2917 (2011).

    Article  Google Scholar 

  37. 37

    Ghosh, P., Smirnov, A. & Nori, F. Artificial photosynthetic reaction centers coupled to light-harvesting antennas. Phys. Rev. E 84, 061138 (2011).

    Article  ADS  Google Scholar 

  38. 38

    Kolli, A., Nazir, A. & Olaya-Castro, A. Electronic excitation dynamics in multichromophoric systems described via a polaron-representation master equation. J. Chem. Phys. 135, 154112 (2011).

    Article  ADS  Google Scholar 

  39. 39

    Wu, J., Liu, F., Shen, Y., Cao, J. & Silbey, R. J. Efficient energy transfer in light-harvesting systems, I: Optimal temperature, reorganization energy, and spatial-temporal correlations. New J. Phys. 12, 105012 (2010).

    Article  ADS  Google Scholar 

  40. 40

    Christensson, N., Kauffmann, H. F., Pullerits, T. & Mančal, T. Origin of long-lived coherences in light-harvesting complexes. J. Phys. Chem. B 116, 7449–7454 (2012).

    Article  Google Scholar 

  41. 41

    Mančal, T. et al. System-dependent signatures of electronic and vibrational coherences in electronic two-dimensional spectra. J. Phys. Chem. Lett. 3, 1497–1502 (2012).

    Article  Google Scholar 

  42. 42

    Hayes, D., Wen, J., Panitchayangkoon, G., Blankenship, R. E. & Engel, G. S. Robustness of electronic coherence in the Fenna–Matthews–Olson complex to vibronic and structural modifications. Faraday Discuss. 150, 459–469 (2011).

    Article  ADS  Google Scholar 

  43. 43

    Olbrich, C., Strumpfer, J., Schulten, K. & Kleinekathofer, U. Quest for spatially correlated fluctuations in the FMO light-harvesting complex. J. Phys. Chem. B 115, 758–764 (2011).

    Article  Google Scholar 

  44. 44

    Jing, Y., Zheng, R., Li, H-X. & Shi, Q. Theoretical study of the electronic-vibrational coupling in the Q(y) states of the photosynthetic reaction center in purple bacteria. J. Phys. Chem. B 116, 1164–1171 (2012).

    Article  Google Scholar 

  45. 45

    Wu, J., Liu, F., Ma, J., Silbey, R. J. & Cao, J. Efficient energy transfer in light-harvesting systems, II: Quantum-classical comparison, flux network, and robustness analysis. Preprint at http://arxiv.org/abs/1109.5769 (2011).

  46. 46

    Briggs, J. S. & Eisfeld, A. Equivalence of quantum and classical coherence in electronic energy transfer. Phys. Rev. E 83, 051911–051914 (2011).

    Article  ADS  Google Scholar 

  47. 47

    Miller, W. H. Perspective: Quantum or classical coherence? J. Chem. Phys. 136, 210901 (2012).

    Article  ADS  Google Scholar 

  48. 48

    Wilde, M. M., McCracken, J. M. & Mizel, A. Could light harvesting complexes exhibit non-classical effects at room temperature? Proc. R. Soc. A 446, 1347–1363 (2010).

    Article  ADS  Google Scholar 

  49. 49

    Li, C-M., Lambert, N., Chen, Y-N., Chen, G-Y. & Nori, F. Witnessing quantum coherence: From solid-state to biological systems. Sci. Rep. 2, 885 (2012).

    Article  Google Scholar 

  50. 50

    Am Busch, M. S., Müh, F., Madjet, M. E. & Renger, T. The eighth bacteriochlorophyll completes the excitation energy funnel in the FMO protein. J. Phys. Chem. Lett. 2, 93–98 (2011).

    Article  Google Scholar 

  51. 51

    Olbrich, C. et al. From atomistic modeling to excitation transfer and two-dimensional spectra of the FMO light-harvesting complex. J. Phys. Chem. B 115, 8609–8621 (2011).

    Article  Google Scholar 

  52. 52

    Ringsmuth, A. K., Milburn, G. J. & Stace, T. M. Multiscale photosynthetic and biomimetic excitation energy transfer. Nature Phys. 8, 562–567 (2012).

    Article  ADS  Google Scholar 

  53. 53

    Dostál, J. et al. Two-dimensional electronic spectroscopy reveals ultrafast energy diffusion in chlorosomes. J. Am. Chem. Soc. 134, 11611–11617 (2012).

    Article  Google Scholar 

  54. 54

    Hoyer, S., Sarovar, M. & Whaley, K. B. Limits of quantum speedup in photosynthetic light harvesting. New J. Phys. 12, 065041 (2010).

    Article  ADS  Google Scholar 

  55. 55

    Cheng, Y-C. & Silbey, R. J. Coherence in the B800 ring of purple bacteria LH2. Phys. Rev. Lett. 96, 028103 (2006).

    Article  ADS  Google Scholar 

  56. 56

    Caycedo-Soler, F., Rodriguez, F. J., Quiroga, L. & Johnson, N. F. Light-harvesting mechanism of bacteria exploits a critical interplay between the dynamics of transport and trapping. Phys. Rev. Lett. 104, 158302 (2010).

    Article  ADS  Google Scholar 

  57. 57

    Horton, P., Johnson, M. P., Perez-Bueno, M. L., Kiss, A. Z. & Ruban, A. V. Photosynthetic acclimation: Does the dynamic structure and macro-organisation of photosystem II in higher plant grana membranes regulate light harvesting states? FEBS J. 275, 1069–1079 (2008).

    Article  Google Scholar 

  58. 58

    Wiltschko, R., Stapput, K., Thalau, P. & Wiltschko, W. Directional orientation of birds by the magnetic field under different light conditions. J. R. Soc. Interf. 7, 163–177 (2010).

    Article  Google Scholar 

  59. 59

    Treiber, C. D. et al. Clusters of iron-rich cells in the upper beak of pigeons are macrophages not magnetosensitive neurons. Nature 484, 367–370 (2012).

    Article  ADS  Google Scholar 

  60. 60

    Wiltschko, W. & Wiltschko, R. Magnetic compass of european robins. Science 176, 62–64 (1972).

    Article  ADS  MATH  Google Scholar 

  61. 61

    Wiltschko, W., Wiltschko, R. & Munro, U. Light-dependent magnetoreception in birds: Does directional information change with light intensity? Naturwissenschaften 87, 36–40 (2000).

    Article  ADS  Google Scholar 

  62. 62

    Wiltschko, W., Stapput, K., Thalau, P. & Wiltschko, R. Avian magnetic compass: Fast adjustment to intensities outside the normal functional window. Naturwissenschaften 93, 300–304 (2006).

    Article  ADS  Google Scholar 

  63. 63

    Ritz, T. Quantum effects in biology: Bird navigation. Proc. Chem. 3, 262–275 (2011).

    Article  Google Scholar 

  64. 64

    Wiltschko, W., Traudt, J., Güntürkün, O., Prior, H. & Wiltschko, R. Lateralization of magnetic compass orientation in a migratory bird. Nature 419, 467–470 (2002).

    Article  ADS  Google Scholar 

  65. 65

    Ritz, T., Thalau, P., Phillips, J. B., Wiltschko, R. & Wiltschko, W. Resonance effects indicate a radical pair mechanism for avian magnetic compass. Nature 429, 177–180 (2004).

    Article  ADS  Google Scholar 

  66. 66

    Schulten, K., Swenberg, C. E. & Weller, A. A biomagnetic sensory mechanism based on magnetic field modulated coherent electron spin motion. Z. Phys. Chem. 111, 1–5 (1978).

    Article  Google Scholar 

  67. 67

    Ritz, T., Adem, S. & Schulten, K. A model for photoreceptor-based magnetoreception in birds. Biophys. J. 78, 707–718 (2000).

    Article  Google Scholar 

  68. 68

    Rodgers, C. T. & Hore, P. J. Chemical magnetoreception in birds: The radical pair mechanism. Proc. Natl Acad. Sci. USA 106, 353–360 (2009).

    Article  ADS  Google Scholar 

  69. 69

    Ritz, T., Ahmad, M., Mouritsen, H., Wiltschko, R. & Wiltschko, W. Photoreceptor-based magnetoreception: Optimal design of receptor molecules, cells, and neuronal processing. J. R. Soc. Interf. 7, S135–S146 (2010).

    Article  Google Scholar 

  70. 70

    Gauger, E. M., Rieper, E., Morton, J. J. L., Benjamin, S. C. & Vedral, V. Sustained quantum coherence and entanglement in the avian compass. Phys. Rev. Lett. 106, 040503 (2011).

    Article  ADS  Google Scholar 

  71. 71

    Steiner, U. & Ulrich, T. Magnetic field effects in chemical kinetics and related phenomena. Chem. Rev. 89, 51–147 (1989).

    Article  Google Scholar 

  72. 72

    Woodward, J. R., Timmel, C. R., McLauchlan, K. A. & Hore, P. J. Radio frequency magnetic field effects on electron–hole recombination. Phys. Rev. Lett. 87, 077602 (2001).

    Article  ADS  Google Scholar 

  73. 73

    Maeda, K. et al. Chemical compass model of avian magnetoreception. Nature 453, 387–390 (2008).

    Article  ADS  Google Scholar 

  74. 74

    Cai, J., Caruso, F. & Plenio, M. B. Quantum limits for the magnetic sensitivity of a chemical compass. Phys. Rev. A 85, 040304(R) (2012).

    Article  ADS  Google Scholar 

  75. 75

    Stoneham, A. M., Gauger, E. M., Porfyrakis, K., Benjamin, S. C. & Lovett, B. W. A new type of radical-pair-based model for magnetoreception. Biophys. J. 102, 961–968 (2012).

    Article  ADS  Google Scholar 

  76. 76

    Wu, L-Q. & Dickman, J. D. Neural correlates of a magnetic sense. Science 336, 1054–1057 (2012).

    Article  ADS  Google Scholar 

  77. 77

    Wiltschko, W. & Wiltschko, R. Magnetic orientation and magnetoreception in birds and other animals. J. Comp. Physiol. A 191, 675–693 (2005).

    Article  MATH  Google Scholar 

  78. 78

    Ritz, T. et al. Magnetic compass of birds is based on a molecule with optimal directional sensitivity. Biophys. J. 96, 3451–3457 (2009).

    Article  ADS  Google Scholar 

  79. 79

    Bandyopadhyay, J. N., Paterek, T. & Kaszlikowski, D. Quantum coherence and sensitivity of avian magnetoreception. Phys. Rev. Lett. 109, 110502 (2012).

    Article  ADS  Google Scholar 

  80. 80

    Cai, J., Guerreschi, G. G. & Briegel, H. J. Quantum control and entanglement in a chemical compass. Phys. Rev. Lett. 104, 220502 (2010).

    Article  ADS  Google Scholar 

  81. 81

    Gray, H. B. & Winkler, J. R. Electron tunneling through proteins. Quat. Rev. Biophys. 36, 341–372 (2003).

    Article  Google Scholar 

  82. 82

    Stuchebrukhov, A. A. Long-distance electron tunneling in proteins. Theor. Chem. Acc. 110, 291–306 (2003).

    Article  Google Scholar 

  83. 83

    Gray, H. B. & Winkler, J. R. Long-range electron transfer. Proc. Natl Acad. Sci. USA 102, 3534–3539 (2005).

    Article  ADS  Google Scholar 

  84. 84

    Nagel, Z. D. & Klinman, J. P. Tunneling and dynamics in enzymatic hydride transfer. Chem. Rev. 106, 3095–3118 (2006).

    Article  Google Scholar 

  85. 85

    Allemann, R. K. & Scrutton, N. S. Quantum Tunnelling in Enzyme-catalysed Reactions (RSC, 2009).

    Book  Google Scholar 

  86. 86

    Stuchebrukhov, A. A. Long-distance electron tunneling in proteins: A new challenge for time-resolved spectroscopy. Laser Phys. 20, 125–138 (2010).

    Article  ADS  Google Scholar 

  87. 87

    Moser, C. C., Anderson, J. L. R. & Dutton, P. L. Guidelines for tunneling in enzymes. BBA—Bioenergetics 1797, 1573–1586 (2010).

    Article  Google Scholar 

  88. 88

    Regan, J. & Onuchic, J. N. Electron-transfer tubes. Adv. Chem. Phys. 107, 497–553 (1999).

    Google Scholar 

  89. 89

    Onuchic, J., Beratan, D., Winkler, J. & Gray, H. Pathway analysis of protein electron-transfer reactions. Ann. Rev. Biophys. Biomol. Struct. 21, 349–369 (1992).

    Article  Google Scholar 

  90. 90

    Xiao, D., Skourtis, S. S., Rubtsov, I. V. & Beratan, D. N. Turning charge transfer on and off in a molecular interferometer with vibronic pathways. Nano Lett. 9, 1818–1823 (2009).

    Article  ADS  Google Scholar 

  91. 91

    Skourtis, S. S., Waldeck, D. H. & Beratan, D. N. Fluctuations in biological and bioinspired electron-transfer reactions. Annu. Rev. Phys. Chem. 61, 461–485 (2010).

    Article  Google Scholar 

  92. 92

    Turin, L. A spectroscopic mechanism for primary olfactory reception. Chem. Senses 21, 773–791 (1996).

    Article  Google Scholar 

  93. 93

    Brookes, J. C., Hartoutsiou, F., Horsfield, A. P. & Stoneham, A. M. Could humans recognize odor by phonon-assisted tunneling? Phys. Rev. Lett. 98, 038101 (2007).

    Article  ADS  Google Scholar 

  94. 94

    Van der Horst, M. A. & Hellingwerf, K. J. Photoreceptor proteins, ‘star actors of modern times’: A review of the functional dynamics in the structure of representative members of six different photoreceptor families. Acc. Chem. Res. 37, 13–20 (2004).

    Article  Google Scholar 

  95. 95

    Sundstrom, V. Femtobiology. Annu. Rev. Phys. Chem. 59, 53–77 (2008).

    Article  ADS  Google Scholar 

  96. 96

    Onuchic, J. & Wolynes, P. Classical and quantum pictures of reaction dynamics in condensed matter—resonances, dephasing, and all that. J. Phys. Chem. 92, 6495–6503 (1988).

    Article  Google Scholar 

  97. 97

    Schoenlein, R. W., Peteanu, L., Mathies, R. A. & Shank, C. The first step in vision: Femtosecond isomerization of rhodopsin. Science 254, 412–415 (1991).

    Article  ADS  Google Scholar 

  98. 98

    Abe, M., Ohtsuki, Y., Fujimura, Y. & Domcke, W. Optimal control of ultrafast cis-trans photoisomerization of retinal in rhodopsin via a conical intersection. J. Chem. Phys. 123, 144508–144508 (2005).

    Article  ADS  Google Scholar 

  99. 99

    Polli, D. et al. Conical intersection dynamics of the primary photoisomerization event in vision. Nature 467, 440–443 (2010).

    Article  ADS  Google Scholar 

  100. 100

    Ben-Nun, M. et al. Quantum dynamics of the femtosecond photoisomerization of retinal in bacteriorhodopsin. Faraday Discuss. 110, 447–462 (1998).

    Article  ADS  Google Scholar 

  101. 101

    Prokhorenko, V. I. et al. Coherent control of retinal isomerization in bacteriorhodopsin. Science 313, 1257–1261 (2006).

    Article  ADS  Google Scholar 

  102. 102

    Prokhorenko, V. I., Halpin, A., Johnson, P. J. M., Miller, R. J. D. & Brown, L. S. Coherent control of the isomerization of retinal in bacteriorhodopsin in the high intensity regime. J. Chem. Phys. 134, 085105 (2011).

    Article  ADS  Google Scholar 

  103. 103

    Sarovar, M., Ishizaki, A., Fleming, G. R. & Whaley, K. B. Quantum entanglement in photosynthetic light-harvesting complexes. Nature Phys. 6, 462–467 (2010).

    Article  ADS  Google Scholar 

  104. 104

    Wiltschko, W. et al. The magnetic compass of domestic chickens, Gallus gallus. J. Exp. Biol. 210, 2300–2310 (2007).

    Article  Google Scholar 

  105. 105

    Rodgers, C. T., Norman, S. A., Henbest, K. B., Timmel, C. R. & Hore, P. J. Determination of radical re-encounter probability distributions from magnetic field effects on reaction yields. J. Am. Chem. Soc. 129, 6746–6755 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

We thank A. Pisliakov, L. Valkunas, E. Gauger, P. Nation, S. Darroch, I. Mahboob, A. Y. Smirnov, A. Ishizaki, K. Jacobs and S. De Liberato for helpful discussions and feedback. Y-C.C. thanks the National Science Council, Taiwan (Grant No. NSC 100-2113-M-002-004-MY2), the National Taiwan University (Grant No. 10R80912-5) and the Center for Quantum Science and Engineering (Subproject: 10R80914-1) for financial support. Y-N.C. thanks the National Science Council, Taiwan (Grant No. NSC 101-2628-M-006-003-MY3) for financial support. F.N. acknowledges partial support from the ARO, JSPS-RFBR contract No. 12-02-92100, MEXT Kakenhi on Quantum Cybernetics and the JSPS-FIRST Program. C-M.L thanks the National Science Council, Taiwan (No. NSC 101-2112-M-006-016-MY3, No. NSC 101-2738-M-006-005 and No. NSC 103-2911-I-006 -301) for financial support.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Neill Lambert or Franco Nori.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lambert, N., Chen, YN., Cheng, YC. et al. Quantum biology. Nature Phys 9, 10–18 (2013). https://doi.org/10.1038/nphys2474

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing