Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quantum flutter of supersonic particles in one-dimensional quantum liquids

Abstract

Fast obstacles in a medium are responsible for striking physical phenomena, such as aerodynamic flutter, Čerenkov radiation and acoustic shock waves. In a hydrodynamic picture, quantum systems exhibit analogues of these dynamical features. Here we uncover novel quantum dynamics induced by fast particles by considering impurities injected supersonically into a one-dimensional quantum liquid. We find that the injected particle never comes to a full stop, at odds with conventional expectations of relaxation. Furthermore the system excites a new type of collective mode, manifesting itself in several observable quantities, such as long-lived oscillations in the velocity of the injected particle and simultaneous oscillations of the correlation hole formed around the impurity. These features are inherently quantum-mechanical and provide an example of a dynamically formed quantum coherent state propagating through a many-body environment while maintaining its coherence. The signatures of these effects can be probed directly with existing experimental tools.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Correlation hole formation and wave packet emission for γ = 5 and Q = 1.35kF.
Figure 2: Properties of quantum flutter for γ = 5 and Q = 1.35kF.
Figure 3: Physical mechanism behind quantum flutter.
Figure 4: Experimental setup to realize and probe quantum flutter in cold atoms.
Figure 5: Time evolution of for γ = 5 and several values of Q.
Figure 6: Time evolution of for several values of mass ratio r = m/m.

Similar content being viewed by others

References

  1. Kamchatnov, A. & Pitaevskii, L. P. Stabilization of solitons generated by a supersonic flow of Bose–Einstein condensate past an obstacle. Phys. Rev. Lett. 100, 160402 (2008).

    Article  ADS  Google Scholar 

  2. Carusotto, I., Hu, S. X., Collins, L. A. & Smerzi, A. Bogoliubov–Čerenkov radiation in a Bose-Einstein condensate flowing against an obstacle. Phys. Rev. Lett. 97, 260403 (2006).

    Article  ADS  Google Scholar 

  3. Barmettler, P. & Kollath, C. Controllable manipulation and detection of local densities and bipartite entanglement in a quantum gas by a dissipative defect. Phys. Rev. A 84, 041606(R) (2011).

    Article  ADS  Google Scholar 

  4. Trotzky, S. et al. Probing the relaxation towards equilibrium in an isolated strongly correlated one-dimensional Bose gas. Nature Phys. 8, 325–330 (2012).

    Article  ADS  Google Scholar 

  5. Alexandrov, A. S. & Devreeze, J. T. Advances in Polaron Physics: Springer Series in Solid-State Sciences Vol. 159 (Springer, 2010).

    Book  Google Scholar 

  6. Hewson, A. C. The Kondo Problem to Heavy Fermions (Cambridge Univ. Press, 1993).

    Book  Google Scholar 

  7. Nozières, P. Theory of Interacting Fermi Systems (Westview Press, 1964).

    MATH  Google Scholar 

  8. Girardeau, M. D. & Minguzzi, A. Motion of an impurity particle in an ultracold quasi-one-dimensional gas of hard-core bosons. Phys. Rev. A 79, 033610 (2009).

    Article  ADS  Google Scholar 

  9. Latta, C. et al. Quantum quench of Kondo correlations in optical absorption. Nature 474, 627–630 (2011).

    Article  Google Scholar 

  10. Loth, S., Etzkorn, M., Lutz, C. P., Eigler, D. M. & Heinrich, A. J. Measurement of fast electron spin relaxation times with atomic resolution. Science 329, 1628–1630 (2010).

    Article  ADS  Google Scholar 

  11. Palzer, S., Zipkes, C., Sias, C. & Köhl, M. Quantum transport through a Tonks–Girardeau gas. Phys. Rev. Lett. 103, 150601 (2009).

    Article  ADS  Google Scholar 

  12. Girardeau, M. Relationship between systems of impenetrable bosons and fermions in one dimension. J. Math. Phys. 1, 516–523 (1960).

    Article  ADS  MathSciNet  Google Scholar 

  13. Liu, B.-H. et al. Experimental control of the transition from Markovian to non-Markovian dynamics of open quantum systems. Nature Phys. 7, 931–934 (2011).

    Article  ADS  Google Scholar 

  14. Chruściński, D., Kossakowski, A. & Pascazio, S. Long-time memory in non-Markovian evolutions. Phys. Rev. A 81, 032101 (2010).

    Article  ADS  Google Scholar 

  15. Diehl, S. et al. Quantum states and phases in driven open quantum systems with cold atoms. Nature Phys. 4, 878–883 (2008).

    Article  ADS  Google Scholar 

  16. Nascimbène, S. et al. Collective oscillations of an imbalanced Fermi gas: Axial compression modes and polaron effective mass. Phys. Rev. Lett. 103, 170402 (2009).

    Article  ADS  Google Scholar 

  17. Strohmaier, N. et al. Observation of elastic doublon decay in the Fermi-Hubbard model. Phys. Rev. Lett. 104, 080401 (2010).

    Article  ADS  Google Scholar 

  18. Koschorreck, M. et al. Attractive and repulsive Fermi polarons in two dimensions. Nature 485, 619–622 (2012).

    Article  ADS  Google Scholar 

  19. Meineke, J. et al. Interferometric measurement of local spin fluctuations in a quantum gas. Nature Phys. 8, 455–459 (2012).

    Article  ADS  Google Scholar 

  20. Weitenberg, C. et al. Single-spin addressing in an atomic Mott insulator. Nature 471, 319–324 (2011).

    Article  ADS  Google Scholar 

  21. Ngampruetikorn, V., Levinsen, J. & Parish, M. M. Repulsive polarons in two-dimensional Fermi gases. Europhys. Lett. 98, 30005 (2012).

    Article  ADS  Google Scholar 

  22. Kohstall, C. et al. Metastability and coherence of repulsive polarons in a strongly interacting Fermi mixture. Nature 485, 615–618 (2012).

    Article  ADS  Google Scholar 

  23. Wicke, P., Whitlock, S. & van Druten, N. J. Controlling spin motion and interactions in a one-dimensional Bose gas. Preprint at http://arxiv.org/abs/1010.4545 (2010).

  24. Catani, J. et al. Quantum dynamics of impurities in a one-dimensional Bose gas. Phys. Rev. A 85, 023623 (2012).

    Article  ADS  Google Scholar 

  25. Schecter, M., Kamenev, A., Gangardt, D. M. & Lamacraft, A. Critical velocity of a mobile impurity in one-dimensional quantum liquids. Phys. Rev. Lett. 108, 207001 (2012).

    Article  ADS  Google Scholar 

  26. Hakim, V. Nonlinear Schrödinger flow past an obstacle in one dimension. Phys. Rev. E 55, 2835–2845 (1997).

    Article  ADS  Google Scholar 

  27. Rutherford, L., Goold, J., Busch, Th. & McCann, J. F. Transport, atom blockade, and output coupling in a Tonks–Girardeau gas. Phys. Rev. A 83, 055601 (2011).

    Article  ADS  Google Scholar 

  28. Sykes, A. G., Davis, M. J. & Roberts, D. C. Drag force on an impurity below the superfluid critical velocity in a quasi-one-dimensional Bose-Einstein condensate. Phys. Rev. Lett. 103, 085302 (2009).

    Article  ADS  Google Scholar 

  29. Zvonarev, M. B., Cheianov, V. V. & Giamarchi, T. Spin dynamics in a one-dimensional ferromagnetic Bose gas. Phys. Rev. Lett. 99, 240404 (2007).

    Article  ADS  Google Scholar 

  30. Imambekov, A. & Glazman, L. I. Phenomenology of one-dimensional quantum liquids beyond the low-energy limit. Phys. Rev. Lett. 102, 126405 (2009).

    Article  ADS  Google Scholar 

  31. Imambekov, A. & Glazman, L. I. Universal theory of nonlinear Luttinger liquids. Science 323, 228–231 (2009).

    Article  MathSciNet  Google Scholar 

  32. Zvonarev, M. B., Cheianov, V. V. & Giamarchi, T. Edge exponent in the dynamic spin structure factor of the Yang–Gaudin model. Phys. Rev. B 80, 201102(R) (2009).

    Article  ADS  Google Scholar 

  33. Johnson, T. H., Clark, S. R., Bruderer, M. & Jaksch, D. Impurity transport through a strongly interacting bosonic quantum gas. Phys. Rev. A 84, 023617 (2011).

    Article  ADS  Google Scholar 

  34. Büchler, H. P., Geshkenbein, V. B. & Blatter, G. Superfluidity versus Bloch oscillations in confined atomic gases. Phys. Rev. Lett. 87, 100403 (2001).

    Article  ADS  Google Scholar 

  35. Astrakharchik, G. E. & Pitaevskii, L. P. Motion of a heavy impurity through a Bose–Einstein condensate. Phys. Rev. A 70, 013608 (2004).

    Article  ADS  Google Scholar 

  36. Cherny, A. Y., Caux, J-S. & Brand, J. Theory of superfluidity and drag force in the one-dimensional Bose gas. Front. Phys. 7, 54–71 (2012).

    Article  Google Scholar 

  37. Castella, H. & Zotos, X. Exact calculation of spectral properties of a particle interacting with a one-dimensional fermionic system. Phys. Rev. B 47, 16186–16193 (1993).

    Article  ADS  Google Scholar 

  38. Lamacraft, A. Dispersion relation and spectral function of an impurity in a one-dimensional quantum liquid. Phys. Rev. B 79, 241105(R) (2009).

    Article  ADS  Google Scholar 

  39. Caux, J-S. Correlation functions of integrable models: A description of the ABACUS algorithm. J. Math. Phys. 50, 095214 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  40. Chevy, F. Universal phase diagram of a strongly interacting Fermi gas with unbalanced spin populations. Phys. Rev. A 74, 063628 (2006).

    Article  ADS  Google Scholar 

  41. Combescot, R., Recati, A., Lobo, C. & Chevy, F. Normal state of highly polarized Fermi gases: Simple many-body approaches. Phys. Rev. Lett. 98, 180402 (2007).

    Article  ADS  Google Scholar 

  42. Giraud, S. & Combescot, R. Highly polarized Fermi gases: One-dimensional case. Phys. Rev. A 79, 043615 (2009).

    Article  ADS  Google Scholar 

  43. Olshanii, M. Atomic scattering in the presence of an external confinement and a gas of impenetrable bosons. Phys. Rev. Lett. 81, 938–941 (1998).

    Article  ADS  Google Scholar 

  44. Liao, Y. et al. Spin-imbalance in a one-dimensional Fermi gas. Nature 467, 567–569 (2010).

    Article  ADS  Google Scholar 

  45. Kinoshita, T., Wenger, T. & Weiss, D. S. Observation of a one-dimensional Tonks–Girardeau gas. Science 305, 1125–1128 (2004).

    Article  ADS  Google Scholar 

  46. Haller, E. et al. Realization of an excited, strongly correlated quantum gas phase. Science 325, 1224–1227 (2009).

    Article  ADS  Google Scholar 

  47. Kinoshita, T., Wenger, T. & Weiss, D. S. A quantum Newton’s cradle. Nature 440, 900–903 (2006).

    Article  ADS  Google Scholar 

  48. Averin, D. V., Ruggiero, B. & Silvestrini, P. (eds) in Macroscopic Quantum Coherence and Quantum Computing: Proc. Int. Workshop on Macroscopic Quantum Coherence and Computing (Kluver Academic/Plenum Publishers, 2001).

  49. Engel, G. S. et al. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446, 782–786 (2007).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank V. Cheianov, J. Feist, E. Haller, D. Huse, W. Ketterle, H. Kim, H-C. Nägerl, M. Parish, D. Petrov and M. Zwierlein for useful discussions. C.J.M.M. acknowledges support from the NSF through ITAMP at Harvard University and the Smithsonian Astrophysical Observatory. M.B.Z. acknowledges support from the Swiss National Science Foundation through the grant PA00P2_126228 ‘Unconventional Regimes in One Dimensional Quantum Liquids’. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number OCI-1053575. The computational results presented were achieved using XSEDE resources provided by TACC under grant TG-PHY100035, and using the Smithsonian High Performance Cluster.

Author information

Authors and Affiliations

Authors

Contributions

M.B.Z. and C.J.M.M. devised the project and discovered the saturation and oscillations of momentum loss. E.D. proposed and oversaw further calculations which led to a complete physical picture. M.B.Z. and C.J.M.M. carried out the analytical derivations. C.J.M.M. performed the numerical calculations, and prepared the manuscript with substantial input from E.D. and M.B.Z.

Corresponding author

Correspondence to Charles J. M. Mathy.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 4369 kb)

Supplementary Movie

Supplementary Movie 1 (MOV 1077 kb)

Supplementary Movie

Supplementary Movie 2 (MOV 2853 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mathy, C., Zvonarev, M. & Demler, E. Quantum flutter of supersonic particles in one-dimensional quantum liquids. Nature Phys 8, 881–886 (2012). https://doi.org/10.1038/nphys2455

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2455

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing