Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

An SU(6) Mott insulator of an atomic Fermi gas realized by large-spin Pomeranchuk cooling


The Hubbard model accounts for many of the diverse phenomena observed in solid-state materials, despite incorporating only nearest-neighbour hopping and on-site interactions for correlated electrons. One interesting extension to the model involves enlarging its spin symmetry to , which describes systems with orbital degeneracy. Here we report a successful formation of the SU(6) symmetric Mott-insulator state with an atomic Fermi gas of ytterbium (173Yb) atoms in a three-dimensional optical lattice. In addition to the suppression of compressibility and the charge-excitation gap characteristic of a Mott-insulating phase, we reveal that the SU(6) system can achieve lower temperatures than the SU(2) state, owing to differences in the entropy carried by an isolated spin. The mechanism is analogous to Pomeranchuk cooling in solid 3He and will be helpful for investigating exotic quantum phases of the SU() Hubbard system at extremely low temperatures.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Lattice modulation spectroscopy.
Figure 2: The DPR for Mott insulators.
Figure 3: Schematic of enhanced Pomeranchuk cooling in an Fermi gas.
Figure 4: Double occupancy and compressibility.


  1. 1

    Jördens, R., Strohmaier, N., Günter, K., Moritz, H. & Esslinger, T. A Mott insulator of fermionic atoms in an optical lattice. Nature 455, 204–207 (2008).

    ADS  Article  Google Scholar 

  2. 2

    Schneider, U. et al. Metallic and insulating phases of repulsively interacting fermions in a 3D optical lattice. Science 322, 1520–1525 (2008).

    ADS  Article  Google Scholar 

  3. 3

    Lee, P. A., Nagaosa, N. & Wen, X-G. Doping a Mott insulator: Physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).

    ADS  Article  Google Scholar 

  4. 4

    Ho, T-L. & Yip, S. Pairing of fermions with arbitrary spin. Phys. Rev. Lett. 82, 247–250 (1999).

    ADS  Article  Google Scholar 

  5. 5

    Wu, C., Hu, J-P. & Zhang, S-C. Exact SO(5) symmetry in the spin- 3/2 fermionic system. Phys. Rev. Lett. 91, 186402 (2003).

    ADS  Article  Google Scholar 

  6. 6

    Honerkamp, C. & Hofstetter, W. Ultracold fermions and the SU(N) Hubbard model. Phys. Rev. Lett. 92, 170403 (2004).

    ADS  Article  Google Scholar 

  7. 7

    Cherng, R. W., Refael, G. & Demler, E. Superfluidity and magnetism in multicomponent ultracold fermions. Phys. Rev. Lett. 99, 130406 (2007).

    ADS  Article  Google Scholar 

  8. 8

    Hermele, M., Gurarie, V. & Rey, A. M. Mott insulators of ultracold fermionic alkaline earth atoms: Underconstrained magnetism and chiral spin liquid. Phys. Rev. Lett. 103, 135301 (2009).

    ADS  Article  Google Scholar 

  9. 9

    Cazalilla, M. A., Ho, A. F. & Ueda, M. Ultracold gases of ytterbium ferromagnetism and Mott states in an SU(6) Fermi system. New J. Phys. 11, 103033 (2009).

    ADS  Article  Google Scholar 

  10. 10

    Gorshkov, A. V. et al. Two-orbital SU(N) magnetism with ultracold alkaline-earth atoms. Nature Phys. 6, 289–295 (2010).

    ADS  Article  Google Scholar 

  11. 11

    Yip, S-K. Bose–Einstein condensation in the presence of artificial spin–orbit interaction. Phys. Rev. A 83, 043616 (2011).

    ADS  Article  Google Scholar 

  12. 12

    Fukuhara, T., Takasu, Y., Kumakura, M. & Takahashi, Y. Degenerate Fermi gases of ytterbium. Phys. Rev. Lett. 98, 030401 (2007).

    ADS  Article  Google Scholar 

  13. 13

    DeSalvo, B. J., Yan, M., Mickelson, P. G., Martinez de Escobar, Y. N. & Killian, T. C. Degenerate Fermi gas of 87Sr. Phys. Rev. Lett. 105, 030402 (2010).

    ADS  Article  Google Scholar 

  14. 14

    Tey, M. K., Stellmer, S., Grimm, R. & Schreck, F. Double-degenerate Bose–Fermi mixture of strontium. Phys. Rev. A 82, 011608 (2010).

    ADS  Article  Google Scholar 

  15. 15

    Kitagawa, M. et al. Two-color photoassociation spectroscopy of ytterbium atoms and the precise determinations of s-wave scattering lengths. Phys. Rev. A 77, 012719 (2008).

    ADS  Article  Google Scholar 

  16. 16

    Stellmer, S., Grimm, R. & Schreck, F. Detection and manipulation of nuclear spin states in fermionic strontium. Phys. Rev. A 84, 043611 (2011).

    ADS  Article  Google Scholar 

  17. 17

    Martinez de Escobar, Y. N. et al. Two-photon photoassociative spectroscopy of ultracold 88Sr. Phys. Rev. A 78, 062708 (2008).

    ADS  Article  Google Scholar 

  18. 18

    Wu, C. Hidden symmetry and quantum phases in spin-3/2 cold atomic systems. Mod. Phys. Lett. B 20, 1707–1738 (2006).

    ADS  Article  Google Scholar 

  19. 19

    Affleck, I. & Marston, J. B. Large- n limit of the Heisenberg–Hubbard model: Implications for high- T c superconductors. Phys. Rev. B 37, 3774–3777 (1988).

    ADS  Article  Google Scholar 

  20. 20

    Read, N. & Sachdev, S. Some features of the phase diagram of the square lattice SU(N) antiferromagnet. Nucl. Phys. B 316, 609–640 (1989).

    ADS  MathSciNet  Article  Google Scholar 

  21. 21

    Kawashima, N. & Tanabe, Y. Ground states of the S U(N) Heisenberg model. Phys. Rev. Lett. 98, 057202 (2007).

    ADS  Article  Google Scholar 

  22. 22

    Hermele, M. & Gurarie, V. Topological liquids and valence cluster states in two-dimensional SU (N) magnets. Phys. Rev. B 84, 174441 (2011).

    ADS  Article  Google Scholar 

  23. 23

    Assaraf, R., Azaria, P., Caffarel, M. & Lecheminant, P. Metal–insulator transition in the one-dimensional SU(N) Hubbard model. Phys. Rev. B 60, 2299–2318 (1999).

    ADS  Article  Google Scholar 

  24. 24

    Manmana, S. R., Hazzard, K. R. A., Chen, G., Feiguin, A. E. & Rey, A. M. SU (N) magnetism in chains of ultracold alkaline-earth-metal atoms: Mott transitions and quantum correlations. Phys. Rev. A 84, 043601 (2011).

    ADS  Article  Google Scholar 

  25. 25

    Li, Y. Q., Ma, M., Shi, D. N. & Zhang, F. C. SU(4) theory for spin systems with orbital degeneracy. Phys. Rev. Lett. 81, 3527–3530 (1998).

    ADS  Article  Google Scholar 

  26. 26

    Tokura, Y. & Nagaosa, N. Orbital physics in transition-metal oxides. Science 288, 462–468 (2000).

    ADS  Article  Google Scholar 

  27. 27

    Scarola, V. W., Pollet, L., Oitmaa, J. & Troyer, M. Discerning incompressible and compressible phases of cold atoms in optical lattices. Phys. Rev. Lett. 102, 135302 (2009).

    ADS  Article  Google Scholar 

  28. 28

    Sugawa, S. et al. Interaction and filling-induced quantum phases of dual Mott insulators of bosons and fermions. Nature Phys. 7, 642–648 (2011).

    ADS  Article  Google Scholar 

  29. 29

    Hazzard, K. R. A., Gurarie, V., Hermele, M. & Rey, A. M. High-temperature properties of fermionic alkaline-earth-metal atoms in optical lattices. Phys. Rev. A 85, 041604 (2012).

    ADS  Article  Google Scholar 

  30. 30

    De Leo, L., Bernier, J-S., Kollath, C., Georges, A. & Scarola, V. W. Thermodynamics of the three-dimensional Hubbard model: Implications for cooling cold atomic gases in optical lattices. Phys. Rev. A 83, 023606 (2011).

    ADS  Article  Google Scholar 

  31. 31

    Rom, T. et al. State selective production of molecules in optical lattices. Phys. Rev. Lett. 93, 073002 (2004).

    ADS  Article  Google Scholar 

  32. 32

    Reischl, A., Schmidt, K. P. & Uhrig, G. S. Temperature in one-dimensional bosonic Mott insulators. Phys. Rev. A 72, 063609 (2005).

    ADS  Article  Google Scholar 

  33. 33

    Gerbier, F. et al. Interference pattern and visibility of a Mott insulator. Phys. Rev. A 72, 053606 (2005).

    ADS  Article  Google Scholar 

  34. 34

    Greif, D., Tarruell, L., Uehlinger, T., Jördens, R. & Esslinger, T. Probing nearest neighbor correlations of ultracold fermions in an optical lattice. Phys. Rev. Lett. 106, 145302 (2011).

    ADS  Article  Google Scholar 

  35. 35

    Kollath, C., Iucci, A., McCulloch, I. P. & Giamarchi, T. Modulation spectroscopy with ultracold fermions in an optical lattice. Phys. Rev. A 74, 041604 (2006).

    ADS  Article  Google Scholar 

  36. 36

    Huber, S. D. & Rüegg, A. Dynamically generated double occupancy as a probe of cold atom systems. Phys. Rev. Lett. 102, 065301 (2009).

    ADS  Article  Google Scholar 

  37. 37

    Hassler, F. & Huber, S. D. Coherent pumping of a Mott insulator: Fermi golden rule versus Rabi oscillations. Phys. Rev. A 79, 021607 (2009).

    ADS  Article  Google Scholar 

  38. 38

    Taie, S. et al. Realization of a SU(2)×SU(6) system of fermions in a cold atomic gas. Phys. Rev. Lett. 105, 190401 (2010).

    ADS  Article  Google Scholar 

  39. 39

    Richardson, R. C. The Pomeranchuk effect. Rev. Mod. Phys. 69, 683–690 (1997).

    ADS  Article  Google Scholar 

  40. 40

    Jördens, R. et al. Quantitative determination of temperature in the approach to magnetic order of ultracold fermions in an optical lattice. Phys. Rev. Lett. 104, 180401 (2010).

    ADS  Article  Google Scholar 

  41. 41

    Rigol, M. & Muramatsu, A. Quantum Monte Carlo study of confined fermions in one-dimensional optical lattices. Phys. Rev. A 69, 053612 (2004).

    ADS  Article  Google Scholar 

  42. 42

    Messio, L. & Mila, F. Entropy dependence of correlations in one-dimensional SU(N) antiferromagnets. Preprint at (2012).

  43. 43

    Cai, Z., Hung, H-h., Wang, L., Zheng, D. & Wu, C. Pomeranchuk cooling of the SU(2N) ultra-cold fermions in optical lattices. Preprint at (2012).

  44. 44

    Bonnes, L. et al. Adiabatic loading of one-dimensional SU(N) alkaline earth fermions in optical lattices. Preprint at (2012).

  45. 45

    Inaba, K., Koga, A., Suga, S-I. & Kawakami, N. Finite-temperature Mott transitions in the multiorbital Hubbard model. Phys. Rev. B 72, 085112 (2005).

    ADS  Article  Google Scholar 

  46. 46

    Sugawa, S., Yamazaki, R., Taie, S. & Takahashi, Y. Bose-Einstein condensate in gases of rare atomic species. Phys. Rev. A 84, 011610 (2011).

    ADS  Article  Google Scholar 

  47. 47

    Denschlag, J. H. et al. Bose-Einstein condensate in an optical lattice. J. Phys. B 35, 3095–3110 (2002).

    ADS  Article  Google Scholar 

  48. 48

    Ten Haaf, D. F. B. & van Leeuwen, J. M. J. High-temperature series expansions for the Hubbard model. Phys. Rev. B 46, 6313–6327 (1992).

    ADS  Article  Google Scholar 

  49. 49

    Henderson, J. A., Oitmaa, J. & Ashley, M. C. B. High-temperature expansion for the single-band Hubbard model. Phys. Rev. B 46, 6328–6337 (1992).

    ADS  Article  Google Scholar 

Download references


We acknowledge M. A. Cazalilla, T. Giamarchi, V. Gurarie, K. R. A. Hazzard, M. Hermele, K. Inaba, A. M. Rey, A. Tokuno and M. Yamashita for helpful discussions. This work is supported by a Grant-in-Aid for Scientific Research of JSPS (No. 18204035, 21102005C01 (Quantum Cybernetics)), GCOE Program ‘The Next Generation of Physics, Spun from Universality and Emergence’ from MEXT of Japan, and World- Leading Innovative R&D on Science and Technology (FIRST). S.T. acknowledge support from the JSPS.

Author information




S.T., R.Y. and S.S. carried out experiments. S.T. analysed the data and performed numerical calculations. Y.T. conducted the whole experiment. All the authors contributed to preparing the manuscript.

Corresponding author

Correspondence to Shintaro Taie.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 418 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Taie, S., Yamazaki, R., Sugawa, S. et al. An SU(6) Mott insulator of an atomic Fermi gas realized by large-spin Pomeranchuk cooling. Nature Phys 8, 825–830 (2012).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing