Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Explaining fast ejections of plasma and exotic X-ray emission from the solar corona

Abstract

Coronal mass ejections (CMEs) are the most energetic events in the solar system and can make near-Earth space a hazardous place. However, there is still no consensus as to what physical mechanisms are responsible for these solar eruptions. Here we demonstrate a fundamental connection between the emergence of magnetic flux into the solar atmosphere and the formation of solar eruptions. We present a model of the dynamics of the solar atmosphere and inner solar wind region using a realistic representation of the electric field at the photosphere, calculated from flux-emergence computer simulations, as the boundary conditions. From this, we show how magnetic flux and helicity injection leads to the reorganization of the solar corona. We show evidence for the in situ formation of a CME plasmoid, which is independent of the emerging flux tube, and we conclusively connect this process to the formation of a hot X-ray structure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Key features in the flux emergence region at t = 30 min.
Figure 2: Time evolution of the helicity injection rate, dH/dt, the integrated helicity, H, input through the photosphere, and the various forms of energy (magnetic, Emag, kinetic, Ekin, thermal, Eth and total, Etot) for the entire numerical experiment.
Figure 3: Reorganization of the solar corona at advanced stages of the flux emergence.
Figure 4: Confined flux ropes and X-ray emission in the corona.

Similar content being viewed by others

References

  1. Gosling, J. T. Coronal mass ejections and magnetic flux ropes in interplanetary space. AGU Monogr. Ser. 58, 343–364 (1990).

    Google Scholar 

  2. Forbes, T. G. A review on the genesis of coronal mass ejections. J. Geophys. Res. 105, 23153–23166 (2000).

    Article  ADS  Google Scholar 

  3. Low, B. C. Coronal mass ejections, magnetic flux ropes and solar magnetism. J. Geophys. Res. 106, 25141–25163 (2001).

    Article  ADS  Google Scholar 

  4. Roussev, I. I. Eruptive events in the solar atmosphere: New insights from theory and 3-D numerical modeling. J. Contemp. Phys. 49, 237–254 (2008).

    Article  ADS  Google Scholar 

  5. Amari, T., Luciani, J. F., Mikić, Z. & Linker, J. Three-dimensional solutions of magnetohydrodynamic equations for prominence magnetic support: Twisted magnetic flux rope. Astrophys. J. Lett. 518, L57–L60 (1999).

    Article  ADS  Google Scholar 

  6. Amari, T., Luciani, J. F., Aly, J. J., Mikić, Z. & Linker, J. Coronal mass ejection: Initiation, magnetic helicity, and flux ropes. II. Turbulent diffusion-driven evolution. Astrophys. J. 595, 1231–1250 (2003).

    Article  ADS  Google Scholar 

  7. Inhester, B., Birn, J. & Hesse, M. The evolution of line-tied coronal arcades including a converging footpoint motion. Sol. Phys. 138, 257–281 (1992).

    Article  ADS  Google Scholar 

  8. Roussev, I. I. et al. A three-dimensional flux-rope model for coronal mass ejections based on a loss of equilibrium. Astrophys. J. Lett. 588, L45–L48 (2003).

    Article  ADS  Google Scholar 

  9. Antiochos, S. K., Devore, C. R. & Klimchuk, J. A. A model for solar coronal mass ejections. Astrophys. J. 510, 485–493 (1999).

    Article  ADS  Google Scholar 

  10. Jacobs, C., Roussev, I. I., Lugaz, N. & Poedts, S. The internal structure of coronal mass ejections: Are all regular magnetic clouds flux ropes? Astrophys. J. Lett. 695, L171–L174 (2009).

    Article  ADS  Google Scholar 

  11. Roussev, I. I. et al. A numerical model of a coronal mass ejection: Shock development with implications for the acceleration of GeV protons. Astrophys. J. Lett. 605, L73–L76 (2004).

    Article  ADS  Google Scholar 

  12. Roussev, I. I. et al. New Physical insight on the changes in magnetic topology during coronal mass ejections: Case studies for the 2002 April 21 and August 24 events. Astrophys. J. Lett. 668, L87–L90 (2007).

    Article  ADS  Google Scholar 

  13. Leka, K. D. et al. Resolving the 180° ambiguity in solar vector magnetic field data: Evaluating the effects of noise, spatial resolution, and method assumptions. Sol. Phys. 260, 83–108 (2009).

    Article  ADS  Google Scholar 

  14. Fisher, G. H., Welsch, B. T. & Abbett, W. P. Can we determine electric fields and Poynting fluxes from vector magnetograms and Doppler measurements? Sol. Phys. 277, 153–163 (2012).

    Article  ADS  Google Scholar 

  15. Abbett, W. P. & Fisher, G. H. A coupled model for the emergence of active region magnetic flux into the solar corona. Astrophys. J. 582, 475–485 (2003).

    Article  ADS  Google Scholar 

  16. Abbett, W. P., Fisher, G. H. & Fan, Y. The three-dimensional evolution of rising, twisted magnetic flux tubes in a gravitationally stratified model convection zone. Astrophys. J. 540, 548–562 (2000).

    Article  ADS  Google Scholar 

  17. Fan, Y. The three-dimensional evolution of buoyant magnetic flux tubes in a model solar convective envelope. Astrophys. J. 676, 680–697 (2008).

    Article  ADS  Google Scholar 

  18. Manchester, W., Gombosi, T., DeZeeuw, D. & Fan, Y. Eruption of a buoyantly emerging magnetic flux rope. Astrophys. J. 610, 588–596 (2004).

    Article  ADS  Google Scholar 

  19. Manchester, W. Solar atmospheric dynamic coupling due to shear motions driven by the Lorentz force. Astrophys. J. 666, 532–540 (2007).

    Article  ADS  Google Scholar 

  20. Archontis, V., Moreno-Insertis, F., Galsgaard, K., Hood, A. & O’Shea, E. Emergence of magnetic flux from the convection zone into the corona. Astron. Astrophys. 426, 1047–1063 (2004).

    Article  ADS  Google Scholar 

  21. Archontis, V., Hood, A. W., Savcheva, A., Golub, L. & DeLuca, E. On the structure and evolution of complexity in sigmoids: A flux emergence model. Astrophys. J. 691, 1276–1291 (2009).

    Article  ADS  Google Scholar 

  22. Linker, J. A., Lionello, R., Mikić, Z. & Amari, T. Magnetohydrodynamic modeling of prominence formation within a helmet streamer. J. Geophys. Res. 106, 25165–25176 (2001).

    Article  ADS  Google Scholar 

  23. Linker, J. A., Mikić, Z., Lionello, R., Riley, P. & Amari, T. Flux cancellation and coronal mass ejections. Phys. Plasm. 10, 1971–1978 (2003).

    Article  ADS  Google Scholar 

  24. Amari, T., Luciani, J. F., Aly, J. J., Mikić, Z. & Linker, J. Coronal mass ejection: Initiation, magnetic helicity, and flux ropes. I. Boundary motion-driven evolution. Astrophys. J. 585, 1073–1086 (2003).

    Article  ADS  Google Scholar 

  25. Jacobs, C. & Poedts, S. A numerical study of the response of coronal magnetic field to flux emergence. Sol. Phys. http://dx.doi.org/10.1007/s11207-012-9941-8 (2012).

  26. Fan, Y. & Gibson, S. E. The emergence of a twisted magnetic flux tube into a preexisting coronal arcade. Astrophys. J. 589, L105–L108 (2003).

    Article  ADS  Google Scholar 

  27. Fan, Y. & Gibson, S. E. Numerical simulations of three-dimensional coronal magnetic fields resulting from the emergence of twisted magnetic flux tubes. Astrophys. J. 609, 1123–1133 (2004).

    Article  ADS  Google Scholar 

  28. Amari, T., Luciani, J. F. & Aly, J. J. Coronal magnetohydrodynamic evolution driven by subphotospheric conditions. Astrophys. J. 615, L165–L168 (2004).

    Article  ADS  Google Scholar 

  29. Amari, T., Luciani, J. F. & Aly, J. J. Coronal closure of sub-photospheric MHD convection for the quiet Sun. Astrophys. J. 681, L45–L45 (2008).

    Article  ADS  Google Scholar 

  30. Roussev, I. I. et al. A three-dimensional model of the solar wind incorporating solar magnetogram observations. Astrophys. J. Lett. 595, L57–L61 (2003).

    Article  ADS  Google Scholar 

  31. Tóth, G. et al. Space weather modeling framework: A new tool for the space science community. J. Geophys. Res. 110, A12226 (2005).

    Article  ADS  Google Scholar 

  32. Tóth, G. et al. Adaptive numerical algorithms in space weather modeling. J. Comput. Phys. 231, 870–903 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  33. Powell, K. G., Roe, P. L., Linde, T. J., Gombosi, T. I. & DeZeeuw, D. L. A solution-adaptive upwind scheme for ideal magnetohydrodynamics. J. Comp. Phys. 154, 284–309 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  34. Priest, E. R. & Titov, V. S. Magnetic reconnection at three-dimensional null points. Phil. Trans. Math., Phys. Eng. Sci. 354, 2951–2992 (1996).

    Article  MathSciNet  Google Scholar 

  35. Titov, V. et al. Slip-squashing factors as a measure of three-dimensional magnetic reconnection. Astrophys. J. 693, 1029–1044 (2009).

    Article  ADS  Google Scholar 

  36. Démoulin, P. & Aulanier, G. Criteria for flux rope eruption: Non-equilibrium versus torus instability. Astrophys. J. 718, 1388–1399 (2010).

    Article  ADS  Google Scholar 

  37. Amari, T. & Aly, J. J. Magnetic flux ropes: Fundamental structures for eruptive phenomena. IAU Symp. 257, 211–222 (2009).

    ADS  Google Scholar 

  38. McKenzie, D. E. & Canfield, R. C. Hinode XRT observations of a long-lasting coronal sigmoid. Astron. Astrophys. 481, L65–L68 (2008).

    Article  ADS  Google Scholar 

  39. Gibson, S. E. & Fan, Y. Coronal prominence structure and dynamics: A magnetic flux rope interpretation. J. Geophys. Res. 111, A12103 (2006).

    Article  ADS  Google Scholar 

  40. Odstrcil, D. Modeling 3-D solar wind structure. Adv. Space Res. 32, 497–506 (2003).

    Article  ADS  Google Scholar 

  41. Golub, L. et al. The X-ray telescope (XRT) for the Hinode mission. Sol. Phys. 243, 63–86 (2007).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research work was supported by CAS grant 2011T2J01 at the YNAO, as well as NSF grant ATM-0639335 (CAREER) at the IfA. We are grateful to P. Biermann, M. Mierla and G. Dima for the useful comments on the manuscript. K.G. acknowledges the access to the Danish Center for Scientific Computing (DCSC) at which the FEM calculations were conducted. N.L. was supported by NSF grant AGS-1239704.

Author information

Authors and Affiliations

Authors

Contributions

I.I.R. and K.G. planned and performed the numerical simulations using the GSCM and FEM, respectively. I.I.R. and K.G. developed the coupled GSCM–FEM. I.I.R., C.D., N.L. and I.V.S. jointly developed the GSCM. I.V.S. participated in the development of the SWMF. The analysis of the simulation results and their interpretation was done by I.I.R., K.G., C.D., N.L., J.L. and E.M. Figures 1 and 3 were prepared by I.I.R., K.G. and E.M. Figure 2 was generated by J.L., I.I.R. and K.G. Figure 4 was prepared by I.I.R. and C.D. Supplementary Fig. S1 was prepared by I.I.R. The manuscript was written by I.I.R. with feedback from all authors, including significant contributions from K.G., C.D. and N.L.

Corresponding author

Correspondence to Ilia I. Roussev.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 404 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roussev, I., Galsgaard, K., Downs, C. et al. Explaining fast ejections of plasma and exotic X-ray emission from the solar corona. Nature Phys 8, 845–849 (2012). https://doi.org/10.1038/nphys2427

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2427

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing