Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dynamics of relativistic transparency and optical shuttering in expanding overdense plasmas

Abstract

Overdense plasmas are usually opaque to laser light. However, when the light is of sufficient intensity to drive electrons in the plasma to near light speeds, the plasma becomes transparent. This process—known as relativistic transparency—takes just a tenth of a picosecond. Yet all studies of relativistic transparency so far have been restricted to measurements collected over timescales much longer than this, limiting our understanding of the dynamics of this process. Here we present time-resolved electric field measurements (with a temporal resolution of 50 fs) of the light, initially reflected from, and subsequently transmitted through, an expanding overdense plasma. Our result provides insight into the dynamics of the transparent-overdense regime of relativistic plasmas, which should be useful in the development of laser-driven particle accelerators, X-ray sources and techniques for controlling the shape and contrast of intense laser pulses.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of relativistic transparency and experimental set-up.
Figure 2: 2D-VPIC simulation of 100 nm foil interaction with the laser.
Figure 3: Evolution of plasma density and Lorentz gamma factor leading to relativistic transparency.
Figure 4: Experimental FROG results.
Figure 5: Time-dependent velocity of the plasma critical surface for 100 nm diamond foil (experiment and simulation).
Figure 6: Simulation and experimental results for thin, high-transmission targets.
Figure 7: Single-shot autocorrelation traces and spectra for laser pulses transmitted through diamond foils.

Similar content being viewed by others

References

  1. Gerstner, E. Laser physics: Extreme light. Nature 446, 16–18 (2007).

    Article  ADS  Google Scholar 

  2. Akhiezer, A. I. & Polovin, R. V. Theory of wave motion of an electron plasma. Sov. Phys., JETP 3, 696–705 (1956).

    MathSciNet  MATH  Google Scholar 

  3. Kaw, P. K. & Dawson, J. M. Relativistic nonlinear propagation of laser beams in cold overdense plasmas. Phys. Fluids 13, 472–481 (1970).

    Article  ADS  Google Scholar 

  4. Liu, X. & Umstadter, D. Competition between ponderomotive and thermal forces in short-scale-length laser plasmas. Phys. Rev. Lett. 69, 1935–1938 (1992).

    Article  ADS  Google Scholar 

  5. Mondal, S. et al. Doppler spectrometry for ultrafast temporal mapping of density dynamics in laser-induced plasmas. Phys. Rev. Lett. 105, 105002 (2010).

    Article  ADS  Google Scholar 

  6. Kingham, R. J., Gibbon, P., Theobald, W., Veisz, L. & Sauerbrey, R. Phase modulation of intense ultrashort laser pulses reflected from steep, dense plasmas. Phys. Rev. Lett. 86, 810–813 (2001).

    Article  ADS  Google Scholar 

  7. Yin, L. et al. Monoenergetic and GeV ion acceleration from the laser breakout afterburner using ultrathin targets. Phys. Plasmas 14, 056706 (2007).

    Article  ADS  Google Scholar 

  8. Yin, L. et al. Break-out afterburner ion acceleration in the longer laser pulse length regime. Phys. Plasmas 18, 063103 (2011).

    Article  ADS  Google Scholar 

  9. Shorokhov, O. & Pukhov, A. Ion acceleration in overdense plasma by short pulse. Laser Particle Beams 22, 175–181 (2004).

    Article  Google Scholar 

  10. Yin, L. et al. Three-dimensional dynamics of breakout afterburner ion acceleration using high-contrast short-pulse laser and nanoscale targets. Phys. Rev. Lett. 107, 045003 (2011).

    Article  ADS  Google Scholar 

  11. Wang, H. Y. et al. Laser shaping of relativistic intense, short Gaussian pulse by a plasma lens. Phys. Rev. Lett. 107, 265002 (2011).

    Article  ADS  Google Scholar 

  12. Nam, I., Kulagin, V. V., Hur, M. S., Lee, I. W. & Suk, H. Generating nearly single-cycle pulses with increased intensity and strongly asymmetric pulses of petawatt level. Phys. Rev. E. 85, 026405 (2012).

    Article  ADS  Google Scholar 

  13. Ji, L. L. et al. Generating quasi-single-cycle relativistic laser pulses by laser-foil interaction. Phys. Rev. Lett. 103, 215005 (2009).

    Article  ADS  Google Scholar 

  14. Vshikov, V. A., Naumova, N. M., Pegoraro, F. & Bulanov, S. V. Nonlinear electrodynamics of the interaction of ultra-intense laser pulses with a thin foil. Phys. Plasmas 5, 2727–2741 (1998).

    Article  ADS  Google Scholar 

  15. Reed, S. A. et al. Relativistic plasma shutter for ultraintense laser pulses. Appl. Phys. Lett. 94, 201117 (2009).

    Article  ADS  Google Scholar 

  16. Wu, H-C., Meyer-ter-Vehn, J., Fernandez, J.C. & Hegelich, B. M. Uniform laser-driven relativistic electron layer for coherent Thomson scattering. Phys. Rev. Lett. 104, 234801 (2010).

    Article  ADS  Google Scholar 

  17. Wu, H-C. & Meyer-ter-Vehn, J. Giant half-cycle attosecond pulses. Nature Photon. 6, 304–307 (2012).

    Article  ADS  Google Scholar 

  18. Kulagin, V. V., Cherepenin, V. A., Hur, M. S. & Suk, H. Theoretical investigation of controlled generation of a dense attosecond relativistic electron bunch from the interaction of an ultrashort laser pulse with a nanofilm. Phys. Rev. Lett. 99, 124801 (2007).

    Article  ADS  Google Scholar 

  19. Sefkow, A. B., Bennett, G. R., Geissel, M., Franke, B. C. & Atherton, B. W. Efficient enhancement for Kα x-ray yields from laser-driven relativistic electrons in solids. Phys. Rev. Lett. 106, 235002 (2011).

    Article  ADS  Google Scholar 

  20. Giulietti, D. et al. Observation of solid-density laminar plasma transparency to intense 30 femtosecond laser pulses. Phys. Rev. Lett. 79, 3194–3197 (1997).

    Article  ADS  Google Scholar 

  21. Fuchs, J. et al. Transmission through highly overdense plasma slabs with a subpicosecond relativistic laser pulse. Phys. Rev. Lett. 80, 2326–2329 (1998).

    Article  ADS  Google Scholar 

  22. Henig, A. et al. Enhanced laser-driven ion acceleration in the relativistic transparency regime. Phys. Rev. Lett. 103, 045002 (2009).

    Article  ADS  Google Scholar 

  23. Hegelich, B. M. et al. Experimental demonstration of particle energy, conversion efficiency and spectral shape required for ion-based fast ignition. Nucl. Fusion 51, 083011 (2011).

    Article  ADS  Google Scholar 

  24. Willingale, L. et al. Characterization of high-intensity laser propagation in the relativistic transparent regime through measurements of energetic proton beams. Phys. Rev. Lett. 102, 125002 (2009).

    Article  ADS  Google Scholar 

  25. Kiefer, D. et al. First observation of quasi-monoenergetic electron bunches driven out of ultra-thin diamond-like carbon (DLC) foils. Eur. Phys. J. D 55, 427–432 (2009).

    Article  ADS  Google Scholar 

  26. Palaniyappan, S. et al. Pulse shape measurements using single shot-frequency resolved optical gating for high energy (80 J) short pulse (600 fs) laser. Rev. Sci. Instrum. 81, 10E103 (2010).

    Article  Google Scholar 

  27. Trebino, R. FROG: The Measurement of Ultrashort Laser Pulses (Springer, 2002).

    Google Scholar 

  28. Theobald, W. et al. Probing black hole physics in the laboratory using high intensity femtosecond lasers. in Proc. Ultrafast Phenomena XI (Springer Series in Chemical Physics, Springer, 1998).

    Google Scholar 

  29. Le Blanc, S. P., Gaul, E. W., Matlis, N. H., Rundquist, A. & Downer, M. C. Single-shot measurement of temporal phase shits by frequency-domain holography. Opt. Lett. 25, 764–766 (2000).

    Article  ADS  Google Scholar 

  30. Geindre, J. P. et al. Frequency-domain interferometer for measuring the phase and amplitude of a femtosecond pulse probing a laser-produced plasma. Opt. Lett. 19, 1997–1999 (1994).

    Article  ADS  Google Scholar 

  31. Batha, S. et al. TRIDENT high-energy-density facility experimental capabilities and diagnostics. Rev. Sci. Instrum. 79, 10F305 (2008).

    Article  Google Scholar 

  32. Shah, R. C. et al. High-temporal contrast using low-gain optical parametric amplification. Opt. Lett. 34, 2273–2275 (2009).

    Article  ADS  Google Scholar 

  33. Gautier, D. C. et al. A novel backscatter focus diagnostic for the TRIDENT 200 TW laser. Rev. Sci. Instrum. 79, 10F547 (2008).

    Article  Google Scholar 

  34. Flippo, K. et al. Overcritical to underdense plasma in under 1 μm: 150 TW laser-thin-target interactions for particle acceleration. IEEE Trans. Plasma Sci. 39, 2428–2429 (2011).

    Article  ADS  Google Scholar 

  35. Bowers, K. J., Albright, B. J., Yin, L., Bergen, B. & Kwan, T. J. T. Ultrahigh performance three-dimensional electromagnetic relativistic kinetic plasma simulation. Phys. Plasmas 15, 055703 (2008).

    Article  ADS  Google Scholar 

  36. Wilks, S. C., Kruer, W. L., Tabak, M. & Langdon, A. B. Absorption of ultra-intense laser pulses. Phys. Rev. Lett. 69, 1383–1386 (1992).

    Article  ADS  Google Scholar 

  37. Lefebvre, E & Bonnaud, G Transparency/opacity of a solid target illuminated by an ultrahigh-intensity laser pulse. Phys. Rev. Lett. 74, 2002–2005 (1995).

    Article  ADS  Google Scholar 

  38. Eremin, V. I., Korzhimanov, A. V. & Kim, A. V. Relativistic self-induced transparency effect during ultraintense laser interaction with overdense plasmas: Why it occurs and its use for ultrashort electron bunch generation. Phys. Plasmas 17, 043102 (2010).

    Article  ADS  Google Scholar 

  39. Tushentsov, M., Kim, A., Cattani, F., Anderson, D. & Lisak, M. Electromagnetic energy penetration in the self-induced transparency regime of relativistic laser–plasma interactions. Phys. Rev. Lett. 87, 275002 (2001).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support of the US Department of Energy, the US Office of Fusion Energy Sciences, the US Domestic Nuclear Detection Office, LANL LDRD and the DFG cluster of excellence at the Munich Center for Advanced Photonics. LANL Institutional Computing and Oak Ridge National Laboratory (Jaguar) provided necessary computing resources. We acknowledge the assistance of K. Flippo in obtaining the reflected light images and the work of the Trident staff with respect to laser operations.

Author information

Authors and Affiliations

Authors

Contributions

S.P., R.C.S. and B.M.H. conceived the experiment. S.P., R.C.S., D.J., D.C.G., D.T.O., S.L., B.M.H. and J.C.F. developed the diagnostic/executed the experiment. H-C.W., L.Y. and B.J.A. performed numerical simulations. S.P. and R.C.S. analysed the data and simulations. R.J. and T.S. managed laser operation in addition to contributions in development of the pulse temporal characterization diagnostics. R.C.S. initiated and led this specific research under the larger projects and guidance of B.M.H. J.C.F. provided additional scientific guidance and also assisted with logistical support. The manuscript was prepared by S.P. and R.C.S. with contributions from B.D. as well as all others.

Corresponding authors

Correspondence to Sasi Palaniyappan or Rahul C. Shah.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 568 kb)

Supplementary Movie

Supplementary Movie 1 (AVI 11152 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palaniyappan, S., Hegelich, B., Wu, HC. et al. Dynamics of relativistic transparency and optical shuttering in expanding overdense plasmas. Nature Phys 8, 763–769 (2012). https://doi.org/10.1038/nphys2390

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2390

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing