Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Decrease of upper critical field with underdoping in cuprate superconductors

This article has been updated


It is still unclear why the transition temperature Tc of cuprate superconductors falls with underdoping. The doping dependence of the critical magnetic field Hc2 is directly relevant to this question, but different estimates of Hc2 are in sharp contradiction. We resolve this contradiction by tracking the characteristic field scale of superconducting fluctuations as a function of doping, via measurements of the Nernst effect in La1.8−xEu0.2SrxCuO4. Hc2 is found to fall with underdoping, with a minimum where stripe order is strong. The same non-monotonic behaviour is observed in the archetypal cuprate superconductor YBa2Cu3Oy. We conclude that competing states such as stripe order weaken superconductivity and cause both Hc2 and Tc to fall as cuprates become underdoped.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Doping dependence of the upper critical field Hc2 in cuprate superconductors.
Figure 2: Quasiparticle and superconducting contributions to the Nernst signal in Eu–LSCO.
Figure 3: Peak field H* in the superconducting Nernst signal above Tc.
Figure 4: Temperature dependence: comparison to Gaussian theory.
Figure 5: Doping dependence of Hc2 in YBCO and Eu–LSCO.
Figure 6: Field dependence: comparison to Gaussian theory.
Figure 7: Peak field H* in Bi-2201.

Change history

  • 28 August 2012

    In the version of this Article originally published online, the unit on the y axis of Figure 4c was incorrect. This has been corrected in all versions of the Article


  1. Norman, M. R. et al. The pseudogap: Friend or foe of high Tc? Adv. Phys. 54, 715–733 (2005).

    ADS  Article  Google Scholar 

  2. Emery, V. J. & Kivelson, S. A. Importance of phase fluctuations in superconductors with small superfluid density. Nature 374, 434–437 (1995).

    ADS  Article  Google Scholar 

  3. Kanigel, A. et al. Evidence for pairing above the transition temperature of cuprate superconductors from the electronic dispersion in the pseudogap phase. Phys. Rev. Lett. 101, 137002 (2008).

    ADS  Article  Google Scholar 

  4. Chatterjee, U. et al. Observation of a d-wave nodal liquid in highly underdoped Bi2212. Nature Phys. 6, 99–103 (2010).

    ADS  Article  Google Scholar 

  5. Tanaka, K. et al. Distinct Fermi-momentum-dependent energy gaps in deeply underdoped Bi2212. Science 314, 1910–1913 (2006).

    ADS  Article  Google Scholar 

  6. Kondo, T. et al. Competition between the pseudogap and superconductivity in the high- Tc copper oxides. Nature 457, 296–300 (2008).

    ADS  Article  Google Scholar 

  7. Ando, Y. & Segawa, K. Magnetoresistance of untwinned YBa2Cu3Oy single crystals in a wide range of doping: Anomalous hole-doping dependence of the coherence length. Phys. Rev. Lett. 88, 167005 (2002).

    ADS  Article  Google Scholar 

  8. Wang, Y. et al. Dependence of upper critical field and pairing strength on doping in cuprates. Science 299, 86–89 (2003).

    ADS  Article  Google Scholar 

  9. Xu, Z.A. et al. Vortex-like excitations and the onset of superconducting phase fluctuations in underdoped LSCO. Nature 406, 486–488 (2000).

    ADS  Article  Google Scholar 

  10. Wang, Y. et al. Nernst effect in high- Tc superconductors. Phys. Rev. B 73, 024510 (2006).

    ADS  Article  Google Scholar 

  11. Pourret, A. et al. Observation of the Nernst signal generated by fluctuating Cooper pairs. Nature Phys. 2, 683–686 (2006).

    ADS  Article  Google Scholar 

  12. Pourret, A. et al. Nernst effect as a probe of superconducting fluctuations in disordered thin films. New J. Phys. 11, 055071 (2009).

    ADS  Article  Google Scholar 

  13. Ussishkin, I., Sondhi, S. L. & Huse, D. A. Gaussian superconducting fluctuations, thermal transport, and the Nernst effect. Phys. Rev. Lett. 89, 287001 (2002).

    ADS  Article  Google Scholar 

  14. Serbyn, M. N. et al. Giant Nernst effect due to fluctuating Cooper pairs in superconductors. Phys. Rev. Lett. 102, 067001 (2009).

    ADS  Article  Google Scholar 

  15. Michaeli, K. & Finkel’stein, A. M. Fluctuations of the superconducting order parameter as an origin of the Nernst effect. Europhys. Lett. 86, 27007 (2009).

    ADS  Article  Google Scholar 

  16. Podolsky, D., Raghu, S. & Vishwanath, A. Nernst effect and diamagnetism in phase-fluctuating superconductors. Phys. Rev. Lett. 99, 117004 (2007).

    ADS  Article  Google Scholar 

  17. Pourret, A. et al. Length scale for the superconducting Nernst signal above Tc in Nb0.15Si0.85 . Phys. Rev. B 76, 214504 (2007).

    ADS  Article  Google Scholar 

  18. Doiron-Leyraud, N. et al. Quantum oscillations and the Fermi surface in an underdoped high- Tc superconductor. Nature 447, 565–568 (2007).

    ADS  Article  Google Scholar 

  19. Sebastian, S. E. et al. Fermi-liquid theory in an underdoped high- Tc superconductor. Phys. Rev. B 81, 140505 (2010).

    ADS  Article  Google Scholar 

  20. Li, L. et al. Diamagnetism and Cooper pairing above Tc in cuprates. Phys. Rev. B 81, 054510 (2010).

    ADS  Article  Google Scholar 

  21. Wang, Y. et al. Field-enhanced diamagnetism in the pseudogap state of the cuprate superconductor Bi2Sr2CaCu2O8 in an intense magnetic field. Phys. Rev. Lett. 95, 247002 (2005).

    ADS  Article  Google Scholar 

  22. Schneider, T. & Weyeneth, S. Diamagnetism, Nernst signal, and finite-size effects in superconductors above the transition temperature Tc . Phys. Rev. B 83, 144527 (2011).

    ADS  Article  Google Scholar 

  23. LeBoeuf, D. et al. Lifshitz critical point in the cuprate superconductor YBa2Cu3Oy from high-field Hall effect measurements. Phys. Rev. B 83, 054056 (2011).

    Article  Google Scholar 

  24. Laliberté, F. et al. Fermi-surface reconstruction by stripe order in cuprate superconductors. Nature Commun. 2, 432 (2011).

    Article  Google Scholar 

  25. Sonier, J. E. et al. Hole-doping dependence of the magnetic penetration depth and vortex core size in YBa2Cu3Oy: Evidence for stripe correlations near 1/8 hole doping. Phys. Rev. B 76, 134518 (2007).

    ADS  Article  Google Scholar 

  26. Fink, J. et al. Phase diagram of charge order in La1.8−xEu0.2SrxCuO4 from resonant soft x-ray diffraction. Phys. Rev. B 83, 092503 (2011).

    ADS  Article  Google Scholar 

  27. Wu, T. et al. Magnetic-field-induced charge-stripe order in the high-temperature superconductor YBa2Cu3Oy . Nature 477, 191–194 (2011).

    ADS  Article  Google Scholar 

  28. Haug, D. et al. Neutron scattering study of the magnetic phase diagram of underdoped YBa2Cu3O6+x . New J. Phys. 12, 105006 (2010).

    ADS  Article  Google Scholar 

  29. Behnia, K. The Nernst effect and the boundaries of the Fermi-liquid picture. J. Phys.: Condens. Matter 21, 113101 (2009).

    ADS  Google Scholar 

  30. Daou, R. et al. Linear temperature dependence of the resistivity and change in the Fermi surface at the pseudogap critical point of a high- Tc superconductor. Nature Phys. 5, 31–34 (2009).

    ADS  Article  Google Scholar 

  31. Hess, C. et al. Nernst effect of stripe ordering La1.8−xEu0.2SrxCuO4 . Eur. Phys. J. Spec. Top. 188, 103–112 (2010).

    Article  Google Scholar 

  32. Cyr-Choinière, O. et al. Enhancement of the Nernst effect by stripe order in a high- Tc superconductor. Nature 458, 743–745 (2009).

    ADS  Article  Google Scholar 

  33. Daou, R. et al. Broken rotational symmetry in the pseudogap phase of a high- Tc superconductor. Nature 463, 519–522 (2010).

    ADS  Article  Google Scholar 

  34. Liang, R. et al. Evaluation of CuO2 plane hole doping in YBa2Cu3O6+x single crystals. Phys. Rev. B 73, 180505 (2006).

    ADS  Article  Google Scholar 

Download references


We thank H. Aubin, K. Behnia, A.M. Finkel’stein, V. Galitski, S. A. Kivelson, K. Michaeli, A. J. Millis, M. R. Norman, M. Serbyn, M. A. Skvortsov, A-M. Tremblay, D. van der Marel, A. Varlamov, and S. Weyerneth for fruitful discussions. We thank S. Y. Li for the resistivity data on Nd–LSCO (Supplementary Fig. S6) and J. Corbin for his assistance with the experiments. We thank K. Michaeli for her unpublished calculations in Fig. 6 and Supplementary Fig. S7. We thank the LNCMI for access to a high-field magnet allowing us to get data up to 28 T (Fig. 2) and 34 T (Fig. 6). J.C. was supported by Fellowships from the Fonds de recherche du Québec—Nature et technologies (FQRNT) and the Swiss National Foundation. E.H. was supported by a Fellowship from the FQRNT and a Junior Fellowship from the Canadian Institute for Advanced Research (CIFAR). L.T. acknowledges support from CIFAR and funding from the Natural Sciences and Engineering Research Council of Canada, FQRNT, the Canada Foundation for Innovation, and a Canada Research Chair.

Author information

Authors and Affiliations



J.C. initiated the project; J.C., N.D-L., O.C-C., F.L., E.H., J-Ph.R. and R.D. performed the Nernst measurements in Sherbrooke; J.C., N.D-L., F.L., O.C-C. and G.G. performed the Nernst measurements at the LNCMI in Grenoble; S.P., T.T. and H.T. prepared the Eu–LSCO samples and measured their resistivity; J.C., N.D-L. and L.T. analysed the data; J.C., N.D-L. and L.T. wrote the manuscript; L.T. supervised the project.

Corresponding author

Correspondence to Louis Taillefer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1627 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chang, J., Doiron-Leyraud, N., Cyr-Choinière, O. et al. Decrease of upper critical field with underdoping in cuprate superconductors. Nature Phys 8, 751–756 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing