Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A wideband, low-noise superconducting amplifier with high dynamic range


An ideal amplifier has very low noise, operates over a broad frequency range, and has large dynamic range. Unfortunately, it is difficult to obtain all of these characteristics simultaneously. For example, modern transistor amplifiers offer multi-octave bandwidths and excellent dynamic range, but their noise remains far above the limit set by the uncertainty principle of quantum mechanics. Parametric amplifiers can reach the quantum-mechanical limit, but generally are narrow band and have very limited dynamic range. Here we describe a parametric amplifier that overcomes these limitations through the use of a travelling-wave geometry and the nonlinear kinetic inductance of a superconducting transmission line. We measure gain extending over 2 GHz on either side of an 11.56 GHz pump tone and place an upper limit on the added noise of 3.4 photons at 9.4 GHz. The dynamic range is very large, and the concept can be applied from gigahertz frequencies to 1 THz.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Response to d.c. current and amplifier design.
Figure 2: Circuit for paramp gain and noise measurements.
Figure 3: Measured and calculated gain.
Figure 4: Noise compared with the HEMT amplifier.


  1. Day, P. K., LeDuc, H. G., Mazin, B. A., Vayonakis, A. & Zmuidzinas, J. A broadband superconducting detector suitable for use in large arrays. Nature 425, 817–821 (2003).

    Article  ADS  Google Scholar 

  2. Wallraff, A. et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162–167 (2004).

    Article  ADS  Google Scholar 

  3. Zmuidzinas, J. Superconducting microresonators: Physics and applications. Annu. Rev. Condens. Matter Phys. 3, 169–214 (2012).

    Article  Google Scholar 

  4. Castellanos-Beltran, M. A., Irwin, K. D., Hilton, G. C., Vale, L. R. & Lehnert, K. W. Amplification and squeezing of quantum noise with a tunable Josephson metamaterial. Nature Phys. 4, 929–931 (2008).

    Article  ADS  Google Scholar 

  5. Yamamoto, T. et al. Flux-driven Josephson parametric amplifier. Appl. Phys. Lett. 93, 042510 (2008).

    Article  ADS  Google Scholar 

  6. Bergeal, N. et al. Phase-preserving amplification near the quantum limit with a Josephson ring modulator. Nature 465, 64–68 (2010).

    Article  ADS  Google Scholar 

  7. Spietz, L., Irwin, K., Lee, M. & Aumentado, J. Noise performance of lumped element direct current superconducting quantum interference device amplifiers in the 4–8 GHz range. Appl. Phys. Lett. 97, 142502 (2010).

    Article  ADS  Google Scholar 

  8. Hover, D. et al. Superconducting low-inductance undulatory galvanometer microwave amplifier. Appl. Phys. Lett. 100, 063503 (2012).

    Article  ADS  Google Scholar 

  9. Mück, M., Kycia, J. B. & Clarke, J. Superconducting quantum interference device as a near-quantum-limited amplifier at 0.5 GHz. Appl. Phys. Lett. 78, 967–969 (2001).

    Article  ADS  Google Scholar 

  10. Zimmer, H. Parametric amplification of microwaves in superconducting Josephson tunnel junctions. Appl. Phys. Lett. 10, 193–195 (1967).

    Article  ADS  Google Scholar 

  11. Moshovich, R. et al. Observation of zero-point noise squeezing via a Josephson parametric amplifier. Phys. Rev. Lett. 65, 1419–1422 (1990).

    Article  ADS  Google Scholar 

  12. Louisell, W. H., Yariv, A. & Siegman, A. E. Quantum fluctuations and noise in parametric processes. I. Phys. Rev. 124, 1646–1654 (1961).

    Article  ADS  Google Scholar 

  13. Caves, C. M. Quantum limits on noise in linear amplifiers. Phys. Rev. D 26, 1817–1839 (1982).

    Article  ADS  Google Scholar 

  14. Pospieszalski, M. W. Extremely low-noise amplification with cryogenic FETs and HFETs: 1970–2004. IEEE Microw. Mag. 6, 62–75 (2005).

    Article  ADS  Google Scholar 

  15. Vijay, R., Slichter, D. H. & Siddiqi, I. Observation of quantum jumps in a superconducting artificial atom. Phys. Rev. Lett. 106, 110502 (2011).

    Article  ADS  Google Scholar 

  16. Clarke, J. & Braginski, A. I. The SQUID Handbook: Fundamentals and Technology of SQUIDs and SQUID Systems 1st edn (Wiley-VCH, 2004).

    Book  Google Scholar 

  17. Irwin, K. D. in AIP Conf. Proc. (eds Young, B., Cabrera, B. & Miller, A.) 229–236 (American Institute of Physics Conference Series, Vol. 1185, 2009).

    Google Scholar 

  18. Cullen, A. L. A travelling-wave parametric amplifier. Nature 181, 332 (1958).

    Article  ADS  Google Scholar 

  19. Tien, P. K. Parametric amplification and frequency mixing in propagating circuits. J. Appl. Phys. 29, 1347–1357 (1958).

    Article  ADS  Google Scholar 

  20. Hansryd, J., Andrekson, P. A., Westlund, M., Li, J. & Hedekvist, P. O. Fiber-based optical parametric amplifiers and their applications. IEEE J. Sel. Top. Quant. Electron. 8, 506–520 (2002).

    Article  ADS  Google Scholar 

  21. Foster, M. A. et al. Broad-band optical parametric gain on a silicon photonic chip. Nature 441, 960–963 (2006).

    Article  ADS  Google Scholar 

  22. Tong, Z. et al. Towards ultrasensitive optical links enabled by low-noise phase-sensitive amplifiers. Nature Photon. 5, 430–436 (2011).

    Article  ADS  Google Scholar 

  23. Sweeny, M. & Mahler, R. A travelling-wave parametric amplifier utilizing Josephson junctions. IEEE Trans. Magn. 21, 654–655 (1985).

    Article  ADS  Google Scholar 

  24. Yurke, B., Roukes, M. L., Movshovich, R. & Pargellis, A. N. A low-noise series-array Josephson junction parametric amplifier. Appl. Phys. Lett. 69, 3078–3080 (1996).

    Article  ADS  Google Scholar 

  25. Parmenter, R. H. Nonlinear electrodynamics of superconductors with a very small coherence distance. RCA Rev. 23, 323–352 (1962).

    Google Scholar 

  26. Anthore, A., Pothier, H. & Esteve, D. Density of states in a superconductor carrying a supercurrent. Phys. Rev. Lett. 90, 127001 (2003).

    Article  ADS  Google Scholar 

  27. Landauer, R. W. Superconductive parametric amplifier. US Patent 3,111,628 (1963).

  28. Tholen, E. A. et al. Nonlinearities and parametric amplification in superconducting coplanar waveguide resonators. Appl. Phys. Lett. 90, 253509 (2007).

    Article  ADS  Google Scholar 

  29. Leduc, H. G. et al. Titanium nitride films for ultrasensitive microresonator detectors. Appl. Phys. Lett. 97, 102509 (2010).

    Article  ADS  Google Scholar 

  30. Mattis, D. C. & Bardeen, J. Theory of the anomalous skin effect in normal and superconducting metals. Phys. Rev. 111, 412–417 (1958).

    Article  ADS  Google Scholar 

  31. Pearl, J. Current distribution in superconducting films carrying quantized fluxoids. Appl. Phys. Lett. 5, 65–66 (1964).

    Article  ADS  Google Scholar 

  32. Anlage, S. M., Snortland, H. J. & Beasley, M. R. A current controlled variable delay superconducting transmission-line. IEEE Trans. Magn. 25, 1388–1391 (1989).

    Article  ADS  Google Scholar 

  33. Stolen, R. & Bjorkholm, J. Parametric amplification and frequency conversion in optical fibers. IEEE J. Quant. Electron. 18, 1062–1072 (1982).

    Article  ADS  Google Scholar 

  34. Landauer, R. Shock waves in nonlinear transmission lines and their effect on parametric amplification. IBM J. Res. Dev. 4, 391–401 (1960).

    Article  MathSciNet  Google Scholar 

  35. Su, H. T., Wang, Y., Huang, F. & Lancaster, M. J. Superconducting delay lines. J. Supercond. 21, 7–16 (2005).

    Article  Google Scholar 

Download references


The research was carried out at the Jet Propulsion Laboratory (JPL), California Institute of Technology, under a contract with the National Aeronautics and Space Administration and has been supported in part by NASA (Science Mission directorate), the Keck Institute for Space Studies, the Gordon and Betty Moore Foundation and the JPL Research and Technology Development program.

Author information

Authors and Affiliations



B.H.E. carried out the measurements and analysed the data. P.K.D. contributed to the device concept, designed the devices, planned the measurements, analysed the data and wrote the paper. H.G.L. developed the fabrication methods and made the devices. J.Z. contributed to the device concept and the writing of the paper.

Corresponding author

Correspondence to Peter K. Day.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 755 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ho Eom, B., Day, P., LeDuc, H. et al. A wideband, low-noise superconducting amplifier with high dynamic range. Nature Phys 8, 623–627 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing