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Experimental device-independent tests of
classical and quantum dimensions
Johan Ahrens1, Piotr Badzia̧g1, Adán Cabello1,2 and Mohamed Bourennane1*

A fundamental resource in any communication and compu-
tation task is the amount of information that can be trans-
mitted and processed. The classical information encoded in
a set of states is limited by the number of distinguishable
states or classical dimension dc of the set. The sets used in
quantum communication and information processing contain
states that are neither identical nor distinguishable, and the
quantum dimension dq of the set is the dimension of the Hilbert
space spanned by these states. An important challenge is
to assess the (classical or quantum) dimension of a set of
states in a device-independent way, that is, without referring
to the internal working of the device generating the states.
Here we experimentally test dimension witnesses designed to
efficiently determine the minimum dimension of sets of (three
or four) photonic states from the correlations originated from
measurements on them, and distinguish between classical and
quantum sets of states.

Classical and quantum dimensions are fundamental quantities
in information processing. In particular, the security of many
cryptographic schemes1–3 crucially relies on the dimensional char-
acteristics of the information carriers. From a fundamental perspec-
tive, the difference between classical and quantum dimensions can
be used for quantification of the non-classicality of correlations:
classical simulation of correlations produced by a quantum system
of (quantum) dimension dq may require a classical system of
(classical) dimension dc�dq (refs 4–6).

The problem of efficiently testing the minimum possible
dimension spanned by a set of states has been approached from
different theoretical perspectives. The concept of a quantum
dimension witness was first introduced for the dimension of
the Hilbert space of composite systems tested locally7, and then
related to the construction of quantum random access codes8 and
approached from a dynamical viewpoint9.

A device-independent approach, that is, without any reference
to the internal working of the device generating the states
(state preparator) was introduced recently10. In this scenario, the
measurement device must be trusted. Such trust can be based on,
for example, the device successfully passing suitable tests before the
test of the state preparator. Moreover, one has to assume that the
manufacturers of the state preparator and the measurement device
do not conspire against the user. This implies that there are no secret
communication channels or preprogrammed correlations between
the state preparator and themeasurement device.

The state preparation and the tests performed under these
premises are shown schematically in Fig. 1. There is a state
preparator with N buttons; it emits a particle in a state ρx
(specified by the device’s supplier) when button x ∈ {1,...,N } is
pressed. For testing, the emitted particles are sent to a measurement
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Figure 1 |Device-independent scenario for testing the minimum classical
or quantum dimension. A state preparator with N buttons emits a particle
in a state ρx when button x∈ {1,...,N} is pressed. This particle is sent to a
measurement device withm buttons. When button y∈ {1,...,m} is pressed,
the device performs measurementMy on the particle. The measurement
produces outcome b∈ {−1,+1}.

device, with m buttons. When button y ∈ {1, ... ,m} is pressed,
the device performs measurement My on the incoming particle.
The measurement produces outcome b ∈ {−1,+1}. A complete
test consists of many measurements on all of the states. It should
yield a probability distribution P(b|x,y) for obtaining result b
in measurement y on state ρx . Suitable combinations of the
experimental probabilities P(b|x,y) can then be compared with the
theoretical bounds for the values of the corresponding (classical or
quantum) dimension witnesses.

For our estimations of the lower bounds for dc and dq we use
recently proposed dimension witnesses10. These witnesses use as
primary quantities the expectation values

Exy = P(+1|x,y)−P(−1|x,y)

In our tests we use two combinations of these expectation values
called I3 and I4. The first combination, I3, works both as a tight
two-dimensional classical witness and a two-dimensional quantum
witness. In other words, it allows one to identify sets of states
with dc ≥ 2 and dq ≥ 2. It uses three preparations, which means
three potentially different states (N = 3) and two dichotomic
measurements (m=2). The corresponding inequalities are:

I3≡ |E11+E12+E21−E22−E31|
bit
≤ 3

qubit
≤ 1+2

√
2
trit,qutrit
≤ 5

where bit
≤ 3 means that no classical system of dimension dc = 2

can give a value larger than 3, and qubit
≤ 1+ 2

√
2 means that no

quantum system of dimension dq = 2 can give a value larger than
1+2
√
2≈3.8284. Finally, trit,qutrit

≤ 5means that no classical system of
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Figure 2 | Experimental set-up for testing classical and quantum
dimension witnesses. The state preparator is a single-photon source
emitting horizontally polarized photons that, after passing through three
half-wave plates suitably oriented at angles θi (with i= 1,2,3), are prepared
in the required states. Information is encoded in horizontal and vertical
polarizations, and in two spatial modes. The probabilities needed for the
dimension witnesses are obtained from the number of detections in the
detectors Di, after properly adjusting the orientations ϕi (with i= 1,2,3) of
the half-wave plates in the measurement device. QWP, quarter-wave plate;
PBS, polarizing beam splitter.

dimension dc= 3 or quantum system of dimension dq= 3 can give
a value larger than 5, which is the algebraicmaximumof I3.

The second combination, I4, tests sets of four states (N = 4)
and uses three dichotomic measurements (m = 3). It represents
witnesses represented by the following inequalities:

I4 ≡ |E11+E12+E13+E21+E22−E23+E31−E32−E41|

bit
≤ 5

qubit
≤ 6

trit
≤ 7

qutrit
≤ 2+

√
13+16

√
2
quart,ququart
≤ 9

Thus, I4 is a dimension witness capable of identifying dc ≥ 2,3
and dq ≥ 2,3. One may notice that the power of the measurement
devices relies to a large extent on the user’s degree of control of this
device. For instance, with a limited knowledge of what the device is
actuallymeasuring, the user obtaining an outcome 5.8 for I4 will not
know whether the states represent a ‘dirty’ 3-dim or 4-dim set or a
quantum 2-dim set of states. On the other hand, a user who knows
that the measurements were confined to a 2-dim Hilbert space can
be sure that the tested set of states is genuinely quantum.

The state preparator in Fig. 2 emits photons in which informa-
tion is encoded in horizontal (H) and vertical (V) polarizations,
and in two spatial modes (a and b). We define four basis states:
|0〉 ≡ |H,a〉, |1〉 ≡ |V,a〉, |2〉 ≡ |H,b〉 and |3〉 ≡ |V,b〉. With these
encodings, any qubit state can be represented as α|H,a〉+β|V,a〉,
any qutrit state as α|H,a〉+β|V,a〉+γ |H,b〉 and any ququart state
as α|H,a〉+β|V,a〉+γ |H,b〉+δ|V,b〉.

In our experiments, the photonic states were prepared as follows:
a single-photon source (see the state preparator frame in Fig. 2)
emitted a horizontally polarized photon. On passing through
three suitably oriented half-wave plates HWP(θ1), HWP(θ2) and
HWP(θ3), the state of the emitted photon was converted to the
required state |ψ〉

|ψ〉 = sin(2θ1)cos(2θ2)|H,a〉+ sin(2θ1)sin(2θ2)|V,a〉

+ cos(2θ1)cos(2θ3)|H,b〉+cos(2θ1)sin(2θ3)|V,b〉
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Figure 3 | Experimental results of the dimension witness tests. The
vertical dashed line labelled ‘bit’ represents the maximum value achievable
with bits, and similarly for the other vertical dashed lines. I3 optimal qutrits
means that the black box emits qutrit states that give the maximum value
for I3 using qutrits, and similarly for the other preparations. BB84 qubits
denotes the states used in standard quantum cryptography.

Thus, by adjusting the HWP orientation angles θi, we could
produce any of the states in the experiment. Classical sets
(bits, trits, quarts) consisted of states designed to be perfectly
distinguishable or identical.

The measurement device could be set in different ways. For
experiments with qubit states, P(+1|x,y) was obtained from the
number of detections in D1, and P(−1|x,y) was obtained from the
number of detections in D3. Otherwise for experiments with qutrit
states,P(+1|x,y) was obtained from the number of detections inD1
andD2, andP(−1|x,y) was obtained from the number of detections
in D3. When the state preparator announced classical sets, the
measurement settings became particularly simple and reduced to
arranging the detectors so that they clicked on receiving a photon in
a particular basis state: |0〉→D1, |1〉→D3, |2〉→D2 and |3〉→D4.
The sought for measurement settings were obtained by adjusting
the orientations ϕi of the half-wave plates HWP(ϕ1) and HWP(ϕ2)
(see the measurement device frame in Fig. 2).

Our single-photon source was weak coherent light from a
stabilized narrow-bandwidth diode laser emitting at 780 nm and
offering a long coherence length. The laser was attenuated so that
the two-photon coincidences were negligible. Our single-photon
detectors (Di, i= 1,2,3,4) were silicon avalanche photodiodes with
detection efficiency ηd and dark counts rate Rd. For our detectors
these values were around ηd'0.55 andRd'400Hz, but they varied
slightly from detector to detector. The overall detection efficiency
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Table 1 | Experimental results of the dimension witness tests.

Inequality bound Ith Iexp Ibexp ∆Ip ∆Id ∆IT

I3 (qubit) 3.8284 3.6533 3.7815 0.0772 0.0125 0.0782

I3 (qutrit) 5 4.7119 4.9303 0.1021 0.0150 0.1032

I4 (BB84) 5.6503 5.5210 5.5523 0.1126 0.0133 0.1134

I4 (qubit) 6 5.7554 5.9533 0.1221 0.0163 0.1232

I4 (trit) 7 6.7595 6.9608 0.1433 0.0171 0.1443

I4 (qutrit) 7.9689 7.2909 7.6020 0.1596 0.0419 0.1650

I4 (quart) 9 8.5181 8.9089 0.1833 0.0209 0.1845

Ith , Iexp and Ibexp represent the theoretical, raw experimental and dark-count-corrected experimental values of the dimension witness bounds, respectively. ∆Ip , ∆Id and ∆IT are the errors due to the
limited precision of the settings of the polarization components and the imperfections of the polarization splitting, the propagated Poissonian counting statistics of the raw detection events and the total
errors, respectively.

η of each Di is a product ηdηc, where ηc is the fibre coupling
efficiency (with typical maximal value ηc ' 0.90). To secure the
same overall detection efficiency η for all of the detectors in the
experiment, wemeasured ηd independently of the fibre coupling for
each detector separately and then adjusted the coupling efficiency
ηc. This calibration of the overall detection efficiencies included
even the mismatches in the transmission and reflection losses in the
polarization beam splitters.

The detectors Di produced output transistor–transistor logic
signals of 4.1 V (with duration of 41 ns). The dead time of the
detectors was 50 ns. All single counts were registered using multi-
channel coincidence logic with a timewindow of 1.7 ns.

The first two experiments were I3 tests. The first goal was to
obtain the maximum qubit violation of the bit bound I3(bit)= 3.
For this purpose, we prepared N = 3 qubit states and performed
m= 2 dichotomic measurements intended to maximize the value
of I3. The optimal states and measurements for all experiments are
described in the Methods.

The goal of the second experiment was to obtain the maximum
qutrit violation of the qubit bound I3(qubit) ≈ 3.8284. For
this, we prepared N = 3 qutrit states and performed m = 2
dichotomic measurements. The results yielded I3 very close to the
algebraic bound I3= 5.

The remaining experiments were I4 tests. The goal of the third
experiment was to obtain the maximum qubit violation of the bit
bound I4(bit)= 5. We prepared N = 4 qubit states and performed
m = 3 dichotomic measurements that maximize I4. The goal of
the fourth experiment was to obtain the maximum trit violation
of the qubit bound I4(qubit)= 6. We prepared N = 4 trit states
and performed m = 3 dichotomic measurements that maximize
I4. The goal of the fifth experiment was to obtain the maximum
qutrit violation of the trit bound I4(trit)= 7. We prepared N = 4
qutrit states and performed m= 3 dichotomic measurements that
maximize I4. The sixth experiment was an I4 test on quarts. The
goal was to obtain the maximum quart violation of the qutrit
bound I4(qutrit) = 7.96887. For this, we prepared N = 4 quart
states and performed m = 3 dichotomic measurements. As in
the corresponding I3 test, the results gave I4 very close to the
algebraic bound I4= 9.

The states that saturate the witnesses boundaries may not
be the most valuable for information processing. It is therefore
interesting to test the dimension for the set of states that are
actually used for information processing purposes. For quantum
cryptography, a valuable set of states consists of four pairwise
orthogonal and pairwise unbiased qubit states, such as |ψ1〉 = |0〉,
|ψ2〉 = (1/

√
2)(|0〉+ |1〉), |ψ3〉 = |1〉 and |ψ4〉= (1/

√
2)(|0〉−|1〉)

(ref. 11). Thus, in the seventh experiment we tested the violation of
the bit bound I4(dc = 2)= 5 by the four cryptographic states. For

this, we performed themeasurementsmaximizing the value of I4 for
these states (see Methods for details). Theoretically, this maximal
value is I4(BB84)=

√
2+2+

√
5≈5.6506, that is, a value that clearly

exceeds the bit bound I4(dc= 2)= 5.
All of our experimental results are summarized in Fig. 3. The

obtained experimental values are in a very good agreement with the
theoretical predictions. This clearly demonstrates that we are able
to determine the minimum dimension of a supplied set of states.
The main sources of systematic errors were due to imperfection
of the optical interferometer involved in the measurements, the
non-perfect overlapping of the light modes and the polarization
components. The errors were deduced from propagated Poissonian
counting statistics of the raw detection events, the limited precision
of the settings of the polarization components (HWP plates) and
the imperfection of the polarizing beam splitters. The number of
detected single photons was about 1.5×105 s−1 and the coincidence
to single ratio was less than 2× 10−4. The measurement time for
each experiment was 30 s. All of the results and their corresponding
errors are listed in Table 1.

We have experimentally determined lower bounds for the
dimension of several ensembles of physical systems in a device-
independent way. For the tests, we used classical and quantum
dimension witnesses recently derived10. The witnesses used optimal
measurements and were applied to sets of photonic bits, qubits,
trits, qutrits and quarts in optimal states for maximal violation of
the corresponding dimension witnesses. In addition, we applied
a dimension witness I4 to the four qubit states used in standard
quantum cryptography.

Our results demonstrate how dimension witnesses can be
used to test classical and quantum dimensions of sets of
physical states generated in externally supplied, potentially defective
devices and how one can distinguish between classical and
quantum sets of states of a given dimension. A very good
agreement between the experimental results and the theoretical
predictions makes us believe that the method can be extended
to more complex witnesses and to tests of systems claiming to
span higher dimensions.

Methods
Maximum qubit violation of the bit bound of I3. To design N = 3 qubit states
and m= 2 dichotomic measurements that maximize the value of I3, we consider
the two dichotomic measurements

My =1−2|my 〉〈my | (1)

where 1 denotes the identity matrix and

|m1,2〉= cos
(α
2

)
|0〉∓ sin

(α
2

)
|1〉 (2)
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The three prepared states can be chosen as pure states ρx =|ψx 〉〈ψx |, where

|ψ3〉= cos
(α
2

)
|0〉− sin

(α
2

)
|1〉= |m1〉

The optimization of the set-up can thus be reduced to finding the maximum of the
sum of the larger eigenvalues ofM1+M2 andM1−M2. This fixes parameter α to
αopt=π/4 with the following result:

|m1,2〉=

√
2+
√
2

2
|0〉∓

√
2−
√
2

2
|1〉

States |ψ1〉 and |ψ2〉 are then the corresponding eigenvectors, |ψ1〉 = |1〉 and
|ψ2〉 = (1/

√
2)(|0〉+|1〉).

Maximum qutrit violation of the qubit bound of I3. To reach the algebraic bound
I3= 5 with qutrits, we used

M1= |0〉〈0|−|1〉〈1|+|2〉〈2|

M2= |0〉〈0|+|1〉〈1|−|2〉〈2|

and the states |ψ1〉= |0〉, |ψ2〉= |2〉 and |ψ3〉= |1〉.

Maximum qubit violation of the bit bound of I4. To determine the maximum
qubit violation of I4, we generalize the procedure used for I3. We consider
three measurements My (y = 1,2,3), with |m1〉 and |m2〉 defined in (1) and (2).
State |m3〉 is arbitrary. The optimization of the set-up is now reduced to
maximizing the sum of the largest eigenvalues of M1−M2, M1+M2+M3

and M1+M2−M3. It brings the optimal value of α to αopt = π/6 and
|m3〉 = (1/

√
2)(|0〉− |1〉). The corresponding states are then the eigenvectors

belonging to the maximal eigenvalues ofM1+M2+M3,M1+M2−M3,M1−M2

and −M1, that is,

|ψ1〉= (2+
√
3)|0〉+|1〉

|ψ2〉= (2+
√
3)|0〉−|1〉

|ψ3〉= |0〉+|1〉

|ψ4〉= |m1〉

Maximum trit violation of the qubit bound of I4. The optimal preparations are
|ψ1〉=|ψ2〉=|0〉, |ψ3〉=|2〉 and |ψ4〉=|1〉, and the optimalmeasurements are

M1= |0〉〈0|−|1〉〈1|+|2〉〈2|

M2= |0〉〈0|+|1〉〈1|−|2〉〈2|

M3= |0〉〈0|−|1〉〈1|−|2〉〈2|

Maximum qutrit violation of the trit bound of I4. The optimal measurements
correspond to the observables of the form (1) with

|m1,2〉= cos
(α
2

)
|1〉± sin

(α
2

)
|2〉

The optimization proceeds as for qubits, but the algebra is more
involved. We obtain

|m3〉=
1
√
2
(|0〉+|2〉)

|ψ4〉= |m1〉

|ψ3〉=
1
√
2
(|1〉−|2〉)

and the (unnormalized) |ψ2〉 and |ψ1〉

|ψ2,1〉= |0〉±
[
1−cos α−

√
1+ (1−cos α)2

]
|2〉

The optimal value of cos α is now cos α0= (1/2)(1−
√
2+
√

2
√
2−1)= 0.4689. It

gives I4(dq= 3)= 2+
√

13+16
√
2= 7.9688.

Maximum quart violation of the qutrit bound of I4. The optimal preparations
are |ψ1〉 = |0〉, |ψ2〉 = |2〉, |ψ3〉 = |1〉 and |ψ4〉 = |3〉, and the optimal
measurements are

M1= |0〉〈0|+|1〉〈1|+|2〉〈2|−|3〉〈3|

M2= |0〉〈0|−|1〉〈1|+|2〉〈2|−|3〉〈3|

M3= |0〉〈0|+|1〉〈1|−|2〉〈2|−|3〉〈3|

Violation of the bit bound of I4 with cryptographic states. The measurement
settings maximizing the value of I4 for the standard cryptographic states are
specified by the vectors

|m1〉= |ψ4〉

|m2〉= (c
√
1−p− s

√
p)|0〉+ (c

√
p+ s

√
1−p)|1〉

|m3〉=
c− s
√
2
|0〉+

c+ s
√
2
|1〉

where c = cos(π/8), s= sin(π/8) and p= (1/2)(1+3/
√
10). These measurement

settings give I4(BB84)=
√
2+2+

√
5≈ 5.6506.
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