Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Highly efficient spin transport in epitaxial graphene on SiC

Abstract

Spin information processing is a possible new paradigm for post-CMOS (complementary metal-oxide semiconductor) electronics and efficient spin propagation over long distances is fundamental to this vision. However, despite several decades of intense research, a suitable platform is still wanting. We report here on highly efficient spin transport in two-terminal polarizer/analyser devices based on high-mobility epitaxial graphene grown on silicon carbide. Taking advantage of high-impedance injecting/detecting tunnel junctions, we show spin transport efficiencies up to 75%, spin signals in the mega-ohm range and spin diffusion lengths exceeding 100 μm. This enables spintronics in complex structures: devices and network architectures relying on spin information processing, well beyond present spintronics applications, can now be foreseen.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Devices patterned on epitaxial graphene.
Figure 2: Magnetotransport measurements.
Figure 3: Achievable spin signal amplitude ΔR.
Figure 4: Consistency of measured spin signals with standard transport models.

Similar content being viewed by others

References

  1. Datta, S. & Das, B. Electronic analog of the electro-optic modulator. Appl. Phys. Lett. 56, 665–667 (1990).

    Article  ADS  Google Scholar 

  2. Hall, K. C. & Flatté, M. E. Performance of a spin-based insulated gate field effect transistor. Appl. Phys. Lett. 88, 162503 (2006).

    Article  ADS  Google Scholar 

  3. Dery, H., Cywinski, L., Dalal, P. & Sham, L. J. Spin-based logic in semiconductors for reconfigurable large scale circuits. Nature 447, 573–576 (2007).

    Article  ADS  Google Scholar 

  4. Behin-Aein, B., Datta, D., Salahuddin, S. & Datta, S. Proposal for an all-spin logic device with built-in memory. Nature Nanotech. 5, 266–270 (2010).

    Article  ADS  Google Scholar 

  5. Jedema, F. J., Heersche, H. B., Filip, A. T., Baselmans, J. J. A. & van Wees, B. J. Electrical detection of spin precession in a metallic mesoscopic spin valve. Nature 416, 713–716 (2002).

    Article  ADS  Google Scholar 

  6. Dash, S. P., Sharma, S., Patel, R. S., de Jong, M. P. & Jansen, R. Electrical creation of spin polarization in silicon at room temperature. Nature 462, 491–494 (2009).

    Article  ADS  Google Scholar 

  7. Lou, X. et al. Electrical detection of spin transport in lateral ferromagnet–semiconductor devices. Nature Phys. 3, 197–202 (2007).

    Article  ADS  Google Scholar 

  8. Van’t Erve, O. M. J. et al. Electrical injection and detection of spin-polarized carriers in silicon in a lateral transport geometry. Appl. Phys. Lett. 91, 212109 (2007).

    Article  ADS  Google Scholar 

  9. Rashba, E. Theory of electrical spin injection: Tunnel contacts as a solution of the conductivity mismatch problem. Phys. Rev. B 62, R16267–R16270 (2000).

    Article  ADS  Google Scholar 

  10. Fert, A. & Jaffrès, H. Conditions for efficient spin injection from a ferromagnetic metal into a semiconductor. Phys. Rev. B 64, 184420 (2001).

    Article  ADS  Google Scholar 

  11. Fert, A., George, J-M., Jaffres, H. & Mattana, R. Semiconductors between spin-polarized sources and drains. IEEE Trans. Electron Dev. 54, 921–932 (2007).

    Article  ADS  Google Scholar 

  12. Huertas-Hernando, D., Guinea, F. & Brataas, A. Spin-orbit coupling in curved graphene, fullerenes, nanotubes, and nanotube caps. Phys. Rev. B 74, 155426 (2006).

    Article  ADS  Google Scholar 

  13. Hueso, L. E. et al. Transformation of spin information into large electrical signals using carbon nanotubes. Nature 445, 410–413 (2007).

    Article  ADS  Google Scholar 

  14. Hill, E. W., Geim, A. K., Novoselov, K., Schedin, F. & Blake, P. Graphene spin valve devices. IEEE Trans. Magn. 42, 2694–2696 (2006).

    Article  ADS  Google Scholar 

  15. Tombros, N., Jozsa, C., Popinciuc, M., Jonkman, H. T. & van Wees, B. J. Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 448, 571–574 (2007).

    Article  ADS  Google Scholar 

  16. Wang, W. H. et al. Magnetotransport properties of mesoscopic graphite spin valves. Phys. Rev. B 77, 020402 (2008).

    Article  ADS  Google Scholar 

  17. Ohishi, M. et al. Spin injection into a graphene thin film at room temperature. Jpn. J. Appl. Phys. 46, 605–607 (2007).

    Article  Google Scholar 

  18. Goto, H. et al. Gate control of spin transport in multilayer graphene. Appl. Phys. Lett. 92, 212110 (2008).

    Article  ADS  Google Scholar 

  19. Han, W. et al. Tunneling spin injection into single layer graphene. Phys. Rev. Lett. 105, 167202 (2010).

    Article  ADS  Google Scholar 

  20. De Heer, W. A. et al. Large area and structured epitaxial graphene produced by confinement controlled sublimation of silicon carbide. Proc. Natl Acad. Sci. USA 108, 16900–16905 (2011).

    Article  ADS  Google Scholar 

  21. Berger, C. et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191–1196 (2006).

    Article  ADS  Google Scholar 

  22. Sprinkle, M. et al. First direct observation of a nearly ideal graphene band structure. Phys. Rev. Lett. 103, 226803 (2009).

    Article  ADS  Google Scholar 

  23. Hass, J. et al. Why multilayer graphene on 4H-SiC(000 ) behaves like a single sheet of graphene. Phys. Rev. Lett. 100, 125504 (2008).

    Article  ADS  Google Scholar 

  24. Takahashi, S. & Maekawa, S. Spin currents in metals and superconductors. J. Phys. Soc. Jpn 77, 031009 (2008).

    Article  ADS  Google Scholar 

  25. Jaffrès, H., George, J-M. & Fert, A. Spin transport in multiterminal devices: Large spin signals in devices with confined geometry. Phys. Rev. B 82, 140108 (2010).

    Article  Google Scholar 

  26. Žutić, I., Fabian, J. & Das Sarma, S. Spintronics: Fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).

    Article  ADS  Google Scholar 

  27. Barraud, C. et al. Magnetoresistance in magnetic tunnel junctions grown on flexible organic substrates. Appl. Phys. Lett. 96, 072502 (2010).

    Article  ADS  Google Scholar 

  28. Józsa, C. et al. Linear scaling between momentum and spin scattering in graphene. Phys. Rev. B 80, 241403 (2009).

    Article  ADS  Google Scholar 

  29. Fukuma, Y. et al. Giant enhancement of spin accumulation and long-distance spin precession in metallic lateral spin valves. Nature Mater. 10, 527–531 (2011).

    Article  ADS  Google Scholar 

  30. Dash, S. P. et al. Spin precession and inverted Hanle effect in a semiconductor near a finite-roughness ferromagnetic interface. Phys. Rev. B 84, 054410 (2011).

    Article  ADS  Google Scholar 

  31. Locatelli, A. et al. Corrugation in exfoliated graphene: an electron microscopy and diffraction study. ACS Nano 4, 4879–4889 (2010).

    Article  Google Scholar 

  32. Hiebel, F., Mallet, P., Magaud, L. & Veuillen, J-Y. Atomic and electronic structure of monolayer graphene on 6H-SiC(000 ) (3×3): A scanning tunneling microscopy study. Phys. Rev. B 80, 235429 (2009).

    Article  ADS  Google Scholar 

  33. Dlubak, B. et al. Are Al2O3 and MgO tunnel barriers suitable for spin injection in graphene? Appl. Phys. Lett. 97, 092502 (2010).

    Article  ADS  Google Scholar 

  34. Ikeda, S. et al. Tunnel magnetoresistance of 604% at 300 K by suppression of Ta diffusion in CoFeB/MgO/CoFeB pseudo-spin-valves annealed at high temperature. Appl. Phys. Lett. 93, 082508 (2008).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank H. Jaffrès for helpful discussions. This research was partially supported by the W M Keck Foundation and the NSF under Grant No DMR-0820382. This research was partially supported by the EU FP7 work programme under grant GRAFOL. P.S. wants to acknowledge the Institut Universitaire de France for junior fellowship support.

Author information

Authors and Affiliations

Authors

Contributions

B.D., M-B.M. A.A. and P.S. carried out the whole project, including planning, experimental work, data analysis and writing of the paper. R.M., F.P. and A.F. also discussed the results. A.F. also participated in writing of the paper. C.D., B.S. and S.X. contributed to sample fabrication and characterization. M.S., C.B. and W.A.D.H. grew and characterized the epitaxial graphene layers. All authors participated in general discussions and commented on the manuscript.

Corresponding author

Correspondence to Pierre Seneor.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dlubak, B., Martin, MB., Deranlot, C. et al. Highly efficient spin transport in epitaxial graphene on SiC. Nature Phys 8, 557–561 (2012). https://doi.org/10.1038/nphys2331

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2331

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing