Abstract
Atomic quantum gases in optical lattices serve as a versatile testbed for important concepts of modern condensed-matter physics. The availability of methods to characterize strongly correlated phases is crucial for the study of these systems. Diffraction techniques to reveal long-range spatial structure, which may complement in situ detection methods, have been largely unexplored. Here we experimentally demonstrate that Bragg diffraction of neutral atoms can be used for this purpose. Using a one-dimensional Bose gas as a source of matter waves, we are able to infer the spatial ordering and on-site localization of atoms confined to an optical lattice. We also study the suppression of inelastic scattering between incident matter waves and the lattice-trapped atoms, occurring for increased lattice depth. Furthermore, we use atomic de Broglie waves to detect forced antiferromagnetic ordering in an atomic spin mixture, demonstrating the suitability of our method for the non-destructive detection of spin-ordered phases in strongly correlated atomic gases.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Chimera patterns in conservative Hamiltonian systems and Bose–Einstein condensates of ultracold atoms
Scientific Reports Open Access 26 May 2023
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout



References
Ashcroft, N. W. & Mermin, N. D. Solid State Physics (Holt-Saunders International Editions, 1976).
Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008).
Kuklov, A. B. & Svistunov, B. V. Testing quantum correlations in a confined atomic cloud by the scattering of fast atoms. Phys. Rev. A 60, R769–R772 (1999).
Sanders, S. N., Mintert, F. & Heller, E. J. Matter-wave scattering from ultracold atoms in an optical lattice. Phys. Rev. Lett. 105, 035301 (2010).
Fölling, S. et al. Spatial quantum noise interferometry in expanding ultracold atom clouds. Nature 434, 481–484 (2005).
Altman, E., Demler, E. & Lukin, M. D. Probing many-body states of ultracold atoms via noise correlations. Phys. Rev. A 70, 013603 (2004).
Gemelke, N., Zhang, X., Hung, C-L. & Chin, C. In situ observation of incompressible Mott-insulating domains in ultracold atomic gases. Nature 460, 995–998 (2009).
Bakr, W. S. et al. Probing the superfluid-to-Mott insulator transition at the single-atom level. Science 329, 547–550 (2010).
Sherson, J. F. et al. Single-atom-resolved fluorescence imaging of an atomic Mott insulator. Nature 467, 68–72 (2010).
Gericke, T., Würtz, P., Reitz, D., Langen, T. & Ott, H. High-resolution scanning electron microscopy of an ultracold quantum gas. Nature Phys. 4, 949–953 (2008).
Javanainen, J. & Ruostekoski, J. Optical detection of fractional particle number in an atomic Fermi–Dirac Gas. Phys. Rev. Lett. 91, 150404 (2003).
De Vega, I., Cirac, J. I. & Porras, D. Detection of spin correlations in optical lattices by light scattering. Phys. Rev. A 77, 051804 (2008).
Corcovilos, T. A., Baur, S. K., Hitchcock, J. M., Mueller, E. J. & Hulet, R. G. Detecting antiferromagnetism of atoms in an optical lattice via optical Bragg scattering. Phys. Rev. A 81, 013415 (2010).
Weitenberg, C. et al. Coherent light scattering from a two-dimensional Mott insulator. Phys. Rev. Lett. 106, 215301 (2011).
Pino, J. M., Wild, R. J., Makotyn, P., Jin, D. S. & Cornell, E. A. Photon counting for Bragg spectroscopy of quantum gases. Phys. Rev. A 83, 033615 (2011).
Olshanii, M. Atomic scattering in the presence of an external confinement and a gas of impenetrable bosons. Phys. Rev. Lett. 81, 938–941 (1998).
Kinoshita, T., Wenger, T. & Weiss, D. S. A quantum Newton’s cradle. Nature 440, 900–903 (2006).
Soltan-Panahi, P. et al. Multi-component quantum gases in spin-dependent hexagonal lattices. Nature Phys. 7, 434–440 (2011).
Deutsch, I. H. & Jessen, P. S. Quantum-state control in optical lattices. Phys. Rev. A 57, 1972–1986 (1998).
Pertot, D., Gadway, B. & Schneble, D. Collinear four-wave mixing of two-component matter waves. Phys. Rev. Lett. 104, 200402 (2010).
Gadway, B., Pertot, D., Reimann, R. & Schneble, D. Superfluidity of interacting bosonic mixtures in optical lattices. Phys. Rev. Lett. 105, 045303 (2010).
Stöferle, T., Moritz, H., Schori, C., Köhl, M. & Esslinger, T. Transition from a strongly interacting 1D superfluid to a Mott insulator. Phys. Rev. Lett. 92, 130403 (2004).
Palzer, S., Zipkes, C., Sias, C. & Köhl, M. Quantum transport through a Tonks–Girardeau gas. Phys. Rev. Lett. 103, 150601 (2009).
McKay, D. & DeMarco, B. Thermometry with spin-dependent lattices. New J. Phys. 12, 055013 (2010).
Clément, D., Fabbri, N., Fallani, L., Fort, C. & Inguscio, M. Exploring correlated 1D Bose gases from the superfluid to the Mott-insulator state by inelastic light scattering. Phys. Rev. Lett. 102, 155301 (2009).
Ernst, P. T. et al. Probing superfluids in optical lattices by momentum-resolved Bragg spectroscopy. Nature Phys. 6, 56–61 (2010).
Roscilde, T. & Cirac, J. I. Quantum emulsion: A glassy phase of bosonic mixtures in optical lattices. Phys. Rev. Lett. 98, 190402 (2007).
Gadway, B., Pertot, D., Reeves, J., Vogt, M. & Schneble, D. Glassy behavior in a binary atomic mixture. Phys. Rev. Lett. 107, 145306 (2011).
Fabbri, N., Clément, D., Fallani, L., Fort, C. & Inguscio, M. Momentum-resolved study of an array of one-dimensional strongly phase-fluctuating Bose gases. Phys. Rev. A 83, 031604 (2011).
Stenger, J. et al. Bragg spectroscopy of a Bose–Einstein condensate. Phys. Rev. Lett. 82, 4569–4573 (1999).
Madison, K. W., Chevy, F., Bretin, V. & Dalibard, J. Stationary states of a rotating Bose–Einstein condensate: Routes to vortex nucleation. Phys. Rev. Lett. 86, 4443–4446 (2001).
Raman, C., Abo-Shaeer, J. R., Vogels, J. M., Xu, K. & Ketterle, W. Vortex nucleation in a stirred Bose–Einstein condensate. Phys. Rev. Lett. 87, 210402 (2001).
Pupillo, G., Griessner, A., Micheli, A., Ortner, M., Wang, D-W. & Zoller, P. Cold atoms and molecules in self-assembled dipolar lattices. Phys. Rev. Lett. 100, 050402 (2008).
Pertot, D., Greif, D., Albert, S., Gadway, B. & Schneble, D. Versatile transporter apparatus for experiments with optically trapped Bose–Einstein condensates. J. Phys. B 42, 215305 (2009).
Girardeau, M. Relationship between systems of impenetrable bosons and fermions in one dimension. J. Math. Phys. 1, 516–523 (1960).
Lieb, E. H. & Liniger, W. Exact analysis of an interacting Bose gas. I. The general solution and the ground state. Phys. Rev. 130, 1605–1616 (1963).
Dunjko, V., Lorent, V. & Olshanii, M. Bosons in cigar-shaped traps: Thomas–Fermi regime, Tonks–Girardeau regime, and in between. Phys. Rev. Lett. 86, 5413–5416 (2001).
Gadway, B., Pertot, D., Reimann, R., Cohen, M. G. & Schneble, D. Analysis of Kapitza–Dirac diffraction patterns beyond the Raman–Nath regime. Opt. Express 17, 19173–19180 (2009).
Acknowledgements
We thank G. Pupillo and K. Le Hur for discussions, and M. G. Cohen and T. Bergeman for valuable comments on the manuscript. This work was supported by the National Science Foundation (NSF) (PHY-0855643), and the Research Foundation of The State University of New York (SUNY). B.G. and J.R. acknowledge support from the Graduate Assistance in Areas of National Need (GAANN) program of the US Department of Education.
Author information
Authors and Affiliations
Contributions
D.S., B.G. and D.P. conceived the experiment. B.G. and D.P. carried out the measurements, with assistance from J.R. B.G. performed the data analysis, with contributions by D.P. D.S. supervised the project. All authors discussed the results and implications. B.G. and D.S. wrote the manuscript with contributions from D.P.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Gadway, B., Pertot, D., Reeves, J. et al. Probing an ultracold-atom crystal with matter waves. Nature Phys 8, 544–549 (2012). https://doi.org/10.1038/nphys2320
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphys2320
This article is cited by
-
Chimera patterns in conservative Hamiltonian systems and Bose–Einstein condensates of ultracold atoms
Scientific Reports (2023)
-
Formation of matter-wave polaritons in an optical lattice
Nature Physics (2022)