Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Experimental delayed-choice entanglement swapping

This article has been updated

Abstract

Motivated by the question of which kind of physical interactions and processes are needed for the production of quantum entanglement, Peres has put forward the radical idea of delayed-choice entanglement swapping. There, entanglement can be ‘produced a posteriori, after the entangled particles have been measured and may no longer exist’. Here, we report the realization of Peres’s gedanken experiment. Using four photons, we can actively delay the choice of measurement—implemented through a high-speed tunable bipartite-state analyser and a quantum random-number generator—on two of the photons into the time-like future of the registration of the other two photons. This effectively projects the two already registered photons onto one of two mutually exclusive quantum states in which the photons are either entangled (quantum correlations) or separable (classical correlations). This can also be viewed as ‘quantum steering into the past’.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The concept of delayed-choice entanglement swapping.
Figure 2: Experimental set-up.
Figure 3: Experimental results.

Similar content being viewed by others

Change history

  • 26 April 2012

    In the version of this Article originally published online, the definition of the witness operator given in the paragraph after equation (4) was incorrect. This error has been corrected in all versions of the Article.

References

  1. Einstein, A., Podolsky, B. & Rosen, N. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935).

    Article  ADS  Google Scholar 

  2. Schrödinger, E. Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften 23, 807–812; 823–828; 844–849 (1935). English translation in Proc. Am. Philos. Soc. 124, (1980), reprinted in Wheeler, J. A. & Zurek, W. H. (eds) Quantum Theory and Measurement 152–167 (Princeton Univ. Press,1984).

    Article  Google Scholar 

  3. Žukowski, M., Zeilinger, A., Horne, M. A. & Ekert, A. K. ‘Event-ready-detectors’ Bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287–4290 (1993).

    Article  ADS  Google Scholar 

  4. Peres, A. Delayed choice for entanglement swapping. J. Mod. Opt. 47, 139–143 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  5. Cohen, O. Counterfactual entanglement and nonlocal correlations in separable states. Phys. Rev. A 60, 80–84 (1999).

    Article  ADS  Google Scholar 

  6. Jennewein, T., Achleitner, U., Weihs, G., Weinfurter, H. & Zeilinger, A. A fast and compact quantum random number generator. Rev. Sci. Instrum. 71, 1675–1680 (2000).

    Article  ADS  Google Scholar 

  7. Bohr, N. in Quantum Theory and Measurement (eds Wheeler, J. A. & Zurek, W. H.) 9–49 (Princeton Univ. Press, 1984).

    Google Scholar 

  8. Wheeler, J. A. Mathematical Foundations of Quantum Theory 9–48 (Academic, 1978).

    Book  Google Scholar 

  9. Wheeler, J. A. in Quantum Theory and Measurement (eds Wheeler, J. A. & Zurek, W. H.) 182–213 (Princeton Univ. Press, 1984).

    Google Scholar 

  10. Alley, C. O., Jacubowicz, O. G. & Wickes, W. C. in Proc. Second International Symposium on the Foundations of Quantum Mechanics (ed. Narani, H.) 36–47 (Physics Society of Japan, 1987).

    Google Scholar 

  11. Hellmut, T., Walther, H., Zajonc, A. G. & Schleich, W. Delayed-choice experiments in quantum interference. Phys. Rev. A 35, 2532–2541 (1987).

    Article  ADS  Google Scholar 

  12. Baldzuhn, J., Mohler, E. & Martienssen, W. A wave-particle delayed-choice experiment with a single-photon state. Z. Phys. B 77, 347–352 (1989).

    Article  ADS  Google Scholar 

  13. Kim, Y-H., Yu, R., Kulik, S., Shih, Y. & Scully, M. O. Delayed ‘choice’ quantum eraser. Phys. Rev. Lett. 84, 1–4 (2000).

    Article  ADS  Google Scholar 

  14. Jacques, V. et al. Experimental realization of Wheeler’s delayed-choice gedanken experiment. Science 315, 966–968 (2007).

    Article  ADS  Google Scholar 

  15. Jacques, V. et al. Delayed-choice test of quantum complementarity with interfering single photons. Phys. Rev. Lett. 100, 220402 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  16. Jennewein, T., Weihs, G., Pan, J-W. & Zeilinger, A. Experimental nonlocality proof of quantum teleportation and entanglement swapping. Phys. Rev. Lett. 88, 017903 (2001).

    Article  ADS  Google Scholar 

  17. Sciarrino, F., Lombardi, E., Milani, G. & De Martini, F. Delayed-choice entanglement swapping with vacuum–one-photon quantum states. Phys. Rev. A 66, 024309 (2002).

    Article  ADS  Google Scholar 

  18. Schrödinger, E. Discussion of probability relations between separated systems. Proc. Camb. Phil. Soc. 31, 555–563 (1935).

    Article  ADS  Google Scholar 

  19. Aspect, A., Dalibard, J. & Roger, G. Experimental test of Bell’s inequalities using time-varying analyzers. Phys. Rev. Lett. 49, 1804–1807 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  20. Weihs, G. et al. Violation of Bell’s inequality under strict Einstein locality conditions. Phys. Rev. Lett. 81, 5039–5043 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  21. Scheidl, T. et al. Violation of local realism with freedom of choice. Proc. Natl Acad. Sci. USA 107, 19708–19713 (2010).

    Article  ADS  Google Scholar 

  22. Coffman, V., Kundu, J. & Wootters, W. K. Distributed entanglement. Phys. Rev. A 61, 052306 (1993).

    Article  ADS  Google Scholar 

  23. Pan, J-W., Bouwmeester, D., Weinfurter, H. & Zeilinger, A. Experimental entanglement swapping: Entangling photons that never interacted. Phys. Rev. Lett. 80, 3891–3894 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  24. Riebe, M. et al. Deterministic quantum teleportation with atoms. Nature 429, 734–737 (2004).

    Article  ADS  Google Scholar 

  25. Barrett, M. D. et al. Deterministic quantum teleportation of atomic qubits. Nature 429, 737 (2004).

    Article  ADS  Google Scholar 

  26. Matsukevich, D. N., Maunz, P., Moehring, D. L., Olmschenk, S. & Monroe, C. Bell inequality violation with two remote atomic qubits. Phys. Rev. Lett. 100, 150404 (2008).

    Article  ADS  Google Scholar 

  27. Halder, M. et al. Entangling independent photons by time measurement. Nature Phys. 3, 692–695 (2007).

    Article  ADS  Google Scholar 

  28. Yuan, Z-S. et al. Experimental demonstration of a BDCZ quantum repeater node. Nature 454, 1098–1101 (2008).

    Article  ADS  Google Scholar 

  29. Kaltenbaek, R., Prevedel, R., Aspelmeyer, M. & Zeilinger, A. High-fidelity entanglement swapping with fully independent sources. Phys. Rev. A. 79, 040302 (2009).

    Article  ADS  Google Scholar 

  30. Briegel, H-J., Duer, W., Cirac, J. I. & Zoller, P. Quantum repeaters: The role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).

    Article  ADS  Google Scholar 

  31. Duan, L-M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001).

    Article  ADS  Google Scholar 

  32. Chen, Y-A. et al. Experimental quantum secret sharing and third-man quantum cryptography. Phys. Rev. Lett. 95, 200502 (2005).

    Article  ADS  Google Scholar 

  33. Simon, C. & Irvine, W. T. M. Robust long-distance entanglement and a loophole-free Bell test with ions and photons. Phys. Rev. Lett. 91, 110405 (2003).

    Article  ADS  Google Scholar 

  34. Greenberger, D. M., Horne, M. & Zeilinger, A. Bell theorem without inequalities for two particles. I. Efficient detectors. Phys. Rev. A. 78, 022110 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  35. Greenberger, D. M., Horne, M., Zeilinger, A. & Žukowski, M. Bell theorem without inequalities for two particles. II. Inefficient detectors. Phys. Rev. A. 78, 022111 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  36. Hong, C. K., Ou, Z. Y. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987).

    Article  ADS  Google Scholar 

  37. Mattle, K., Weinfurter, H., Kwiat, P. G. & Zeilinger, A. Dense coding in experimental quantum communication. Phys. Rev. Lett. 76, 4656–4659 (1996).

    Article  ADS  Google Scholar 

  38. Jennewein, T., Aspelmeyer, M., Brukner, Č. & Zeilinger, A. Experimental proposal of switched delayed-choice for entanglement swapping. Int. J. Quant. Info. 3, 73–79 (2005).

    Article  Google Scholar 

  39. Kwiat, P. G. et al. New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337–4341 (1995).

    Article  ADS  Google Scholar 

  40. Brukner, Č., Aspelmeyer, M. & Zeilinger, A. Complementarity and information in delayed-choice for entanglement swapping. Found. Phys. 35, 1909–1919 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  41. Ma, X-S. et al. A high-speed tunable beam splitter for feed-forward photonic quantum information processing. Opt. Express 19, 22723–22730 (2011).

    Article  ADS  Google Scholar 

  42. Gühne, O. et al. Detection of entanglement with few local measurements. Phys. Rev. A 66, 062305 (2002).

    Article  ADS  Google Scholar 

  43. Zhang, Q. et al. Experimental quantum teleportation of a two-qubit composite system. Nature Phys. 2, 678–682 (2006).

    Article  ADS  Google Scholar 

  44. Gühne, O. & Toth, G. Entanglement detection. Phys. Rep. 474, 1–75 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  45. Žukowski, M., Zeilinger, A. & Weinfurter, H. Entangling photons radiated by independent pulsed sources. Ann. N.Y. Acad. Sci. 755, 91–102 (1995).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to N. Tetik and A. Qarry for help during the early stages of the experiment, and M. Aspelmeyer and P. Walther for fruitful discussions. We acknowledge support from the European Commission, Q-ESSENCE (No. 248095), ERC Advanced Senior Grant (QIT4QAD) and the John Templeton Foundation, as well as SFB-FOQUS and the Doctoral Program CoQuS of the Austrian Science Fund (FWF).

Author information

Authors and Affiliations

Authors

Contributions

X-s.M. designed and carried out the experiment and analysed data. S.Z. provided experimental assistance. J.K. provided the theoretical analysis and analysed data. R.U. provided experimental and conceptual assistance. T.J. conceived the research, planned and performed the experiment and analysed data. Č.B. provided theoretical suggestions and analysis. A.Z. conceived the research, designed the experiment and supervised the project. All authors wrote the manuscript.

Corresponding authors

Correspondence to Xiao-song Ma or Anton Zeilinger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 599 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, Xs., Zotter, S., Kofler, J. et al. Experimental delayed-choice entanglement swapping. Nature Phys 8, 479–484 (2012). https://doi.org/10.1038/nphys2294

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2294

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing