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Observation of the kinetic condensation of
classical waves
Can Sun1, Shu Jia1,2, Christopher Barsi1, Sergio Rica3,4, Antonio Picozzi5 and JasonW. Fleischer1*
The observation of Bose–Einstein condensation, in which
particle interactions lead to a thermodynamic transition into
a single, macroscopically populated coherent state, is a
triumph of modern physics1–5. It is commonly assumed that
this transition is a quantum process, relying on quantum
statistics, but recent studies in wave turbulence theory have
suggested that classical waves with random phases can
condense in a formally identical manner6–9. In complete analogy
with gas kinetics, particle velocities map to wavepacket k-
vectors, collisions are mimicked by four-wave mixing, and
entropy principles drive the system towards an equipartition
of energy. Here, we use classical light in a self-defocusing
photorefractive crystal to give the first observation of classical
wave condensation, including the growth of a coherent
state, the spectral redistribution towards equilibrium, and the
formal reversibility of the interactions. The results confirm
fundamental predictions of kinetic wave theory and hold
relevance for a variety of fields, ranging from Bose–Einstein
condensation to information transfer and imaging.

Weakly interacting bosons may exhibit, under extremely low
temperatures, a Bose–Einstein transition1–5. This transition is
characterized by a macroscopic occupation of the ground state. The
quantum nature of the bosons involved is crucial for this process,
and indeed Bose–Einstein condensation (BEC) is a wonderful
manifestation of quantummechanics at amacroscopic scale. On the
other hand, a growing body of theoretical work has predicted that
completely classical wavesmay undergo an analogous condensation
process6–9. The requirements are a random ensemble of waves, so
that statistical arguments apply, and ameans of interaction between
modes. Examples include sea waves stirred by wind, vibrations
on elastic plates, interacting oscillators, and diffracting light that
propagates in a nonlinear medium6,10,11. As these systems evolve,
turbulent wave mixing leads to a self-organized redistribution of
energy: an inverse cascade increases the ‘number of waves’ in
the lowest allowed mode while a normal cascade transfers energy
towards higher momenta. The process is ruled by the natural
thermalization of a conservative Hamiltonian wave system. As
with the collisions of particles, each wave interaction is formally
reversible, yet entropy principlesmandate that the ensemble evolves
towards an equilibrium state of maximum disorder. In this way, a
large-scale coherent structure grows and becomes immersed in a sea
of small-scale fluctuations (‘uncondensed particles’), which store
the information necessary for reversible evolution of the waves.
Here, we directly observe this process of wave condensation, as well
as its formal reversibility, by imaging classical light dynamics in a
photorefractive crystal.
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As in ordinary kinetic theory, wave dynamics can often be
expressed as a hierarchy of interaction processes. Known as
wave turbulence theory10–15, this approach focuses on the spectral
distribution of modes as the field ψ(x,y,z) evolves. We apply
the theory here to the nonlinear propagation of an optical beam,
where ψ describes the envelope of the electric field and the
dynamics occur in the x–y plane as the field propagates along
z . To consider the interaction of modes, we concentrate on the
(ensemble-averaged) power spectrum n(k, z), defined through
n(k, z)δ(k − k′) =

〈
ψ̃∗(k,z)ψ̃(k′,z)

〉
, where ψ̃(kx , ky , z) is the

Fourier transform ofψ(x,y,z) and ∗ denotes complex conjugation.
Formally, following this quantity results in an infinite hierarchy of
moment equations. However, the hierarchy can be closed if the
interactions are sufficiently weak (the ‘gas’ is sufficiently dilute),
so that low-order collisions dominate. For example, for systems in
which four-wave mixing is the dominant interaction, the evolution
of n(k,z) follows the Boltzmann-like kinetic equation10,11,13–15

∂nk1
∂z
= g 2

∫
dk2dk3dk4W0

(
nk3nk4nk1+nk3nk4nk2

− nk1nk2nk3−nk1nk2nk4
)

(1)

where g is the strength of the nonlinear interaction, nki is shorthand
for n(ki,z), and W0= σδ(k1+k2−k3−k4)δ(k21+k

2
2−k

2
3−k

2
4 ) is

the collision term. In this latter term, σ = σ (k1,k2,k3,k4) is a
scattering matrix, which in general depends on the complete set of
k vectors, and the Dirac delta functions ensure the conservation of
momentum and energy. Formany systems, including and especially
the homogeneous optical system considered below, σ reduces to a
simple constant factor. This scalar form is therefore foundational,
in the same sense that hard sphere or s-wave models form the basis
of more complex theories16.

In complete analogy with Boltzmann’s equation, the kinetic
wave equation is not reversible with respect to the propagation
variable z . This happens despite the reversibility of the individual
interactions, due to the truncation of higher-order terms and the
averaging of the overall dynamics14,15. Formally, this is expressed by
the H -theorem of entropy growth dS/dz ≥ 0, where the nonequi-
librium entropy reads S(z) =

∫
log[n(k,z)]dk. The equilibrium

spectrum neq(k) is determined from the condition of zero en-
tropy growth (maximum entropy11). One obtains the celebrated
Rayleigh–Jeans distribution for classical nonlinear waves:

neqk =
T

k2
2kL
−µ

(2)

where k2/2kL may be regarded as the (transverse) kinetic energy
of waves with wavelength 2π/kL and the parameters 1/T and
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Figure 1 | Experimental set-up. Light from a 532 nm laser is collimated onto
intensity and phase spatial light modulators (SLMs). The beam is
modulated with a random intensity and phase pattern and imaged onto the
input plane of a SBN:75 crystal. The output is observed using real (x) space
and Fourier (k) space cameras. A piezo-electric actuator is used to shift the
reference beam in increments of λ0/4. Note: for the purpose of clarity,
imaging lenses are not shown and the spatial light modulators are shown as
transmissive, instead of reflective as in the actual experiment.

−µ/T are Lagrange multipliers introduced to ensure conservation
of energy E =

∫
(k2/2kL)n(k,z)dk and power (‘particle number’)

N =
∫
n(k,z)dk. By analogy with thermodynamics, we call T

the temperature and µ the chemical potential of the system.
Interestingly, the one-to-one correspondence between {N ,E} and
{µ,T } implies that the field evolution can be described in the
framework of themicrocanonical statistical ensemble8,9 (in contrast
with the canonical treatment using a thermal bath16). In what
follows, wewill use both sets of variables interchangeably.

The equilibrium distribution (2) is a Lorentzian spectrum, with
statistics characterized by the correlation length lc= 1/

√
kL|µ|. The

correlation length diverges as µ→ 0, indicating that in an infinite
system the k = 0 (‘plane-wave’) mode become macroscopically
populated. In two dimensions, however, the requirements of finite
temperature, density and energy mean that condensation can occur
only in bounded systems8,9,17; in this case, waves accumulate in
the lowest available wavenumber k0 6= 0 as µ→µc = k20/2kL. The
other ‘excited’ waves occupy an algebraic k−2 spectrum, given by the
tails of the distribution (2), indicating that there is an equipartition
of energy among the uncondensed modes. For the experiment, a
relatively large beam size was chosen (3mmdiameter), so that beam
spreading was negligible over the length of the crystal. The surface
area S of the beam thus bounds the region of wave interactions,
and the system evolves with statistically homogeneous fluctuations
(consistent with a basic assumption of wave turbulence theory).
For the circular beam, the fundamental mode is characterized by
k0= λ0,1/

√
S, where λ0,1/

√
π is the first zero of the Bessel function

J0(r).More details are given in the Supplementary Information.
We realize the condensation of classical waves experimentally

using the set-up shown in Fig. 1. A finite-size, 10mW beam is
projected onto two sequential spatial light modulators (SLMs).
The SLMs create a random-phase field (taken from a Gaussian
(Maxwell–Boltzmann) distribution) with a user-defined correla-
tion length lc. Nonlinear wave action occurs in a 5× 5× 10mm
SBN:75 (Sr0.75Ba0.25Nb2O6) photorefractive crystal with a self-
defocusing (repulsive) coupling strength g controlled by applying
a voltage across the c axis18. Output from the crystal is then imaged
directly in both position (x) andmomentum (k) space.

The condensation of classical waves is shown in Figs 2–4.
Figure 2 shows experimental pictures when the nonlinear coupling
strength is fixed at −500V and the energy per particle E/N is
varied. As the initial kinetic energy decreases, waves accumulate in
the mode with the largest available spatial scale. Considering that
the initial input beam was centred around k = 0, all modes with
spatial frequencies k < k0 = λ0,1/

√
S= 1.6× 10−3 µm−1 belong to

the condensate mode. Using the base width of the spectral peaks
in Fig. 2d,e as the characteristic wavenumber scale, the measured
value of k0 = 2×10−3 µm−1 matches very well with the theoretical

prediction. The approach to this value as condensation progresses
is seen more clearly by considering the corresponding chemical
potential, plotted in Fig. 3a.

The amount of light in the condensate can be determined by a
mode-counting argument. To do this, we limit the wavenumber
range to [k0 ∼ 1/

√
S,kmax ∼ kD], where the ultraviolet cut-off kD

corresponds to the Debye length in the photorefractive crystal
(∼2 µm). Following the usual interpretation of BEC, we separate
the ground state contribution from that of the ‘excited states’16. In
the limit µ→µc = k20/2kL, n

eq
k exhibits a divergence, showing that

the fundamental mode k0 becomes macroscopically populated. The
fraction of condensed power follows directly from equation (2) (a
detailed derivation is given in the Supplementary Information) and
readsN0/N =1−[2kL(E−E0)

∑
n6=0(k

2
n−k

2
0 )
−1
]/N (N∗−1), where

N∗ is the number of modes and E0 =Nk20/2kL refers to the lowest
energy, that is the energy of the optical field when all quasi-particles
occupy the ground state. Condensate fractions for µ = µc and
µ 6= µc are plotted in Fig. 3b. We note that the dynamics follows
the ideal limit over most of the observed energy range, despite the
finite size of the beam.

According to equation (2), the equilibrium state should be a
Rayleigh–Jeans spectrum. Numerical and experimental proof of
this is given in Fig. 3c,d respectively. The figures show explicitly
the conservative nature of the spectral redistribution, with modes
at both low and high wavenumbers growing at the expense
of those in the middle of the range. This bidirectional energy
transfer is required by the formal reversibility of the wave
condensation process: as waves condense into the fundamental
mode, information about their progress is recorded in the dynamics
of the uncondensed, high-k modes8,9,19,20.

Nonlinear interactions are necessary for condensation to occur.
Figure 4 shows experimental pictures when the initial kinetic energy
is fixed (lc = 200 µm) while the nonlinear wave coupling (applied
voltage) is increased. For linear propagation, the output spectrum
(Fig. 4b) is statistically similar to the input spectrum (Fig. 4a). As
the nonlinearity is increased (Fig. 4c–g), the spectrum concentrates
in the fundamental k0 ≈ 0 mode. This mode reached a steady-
state height at approximately −400V, verifying that changing the
interaction strength only changes the rate, not the asymptotic state,
of the condensation process.

We emphasize that the observed spectral redistribution and
condensation of light arises spontaneously from the natural
thermalization of the conservative wave system. This contrasts with
the familiar case of blackbody radiation, in which interaction with
cavity walls prevents photon condensation from taking place5,21.
The thermalization also contrasts with similar wave dynamics
observed in other systems, such as optical mode coupling/locking
in lasers22,23 and self-focusing turbulence in liquid crystals24, which
are inherently dissipative systems driven far from equilibrium. In a
similar way, optical wave thermalization through supercontinuum
generation is affected by the dissipative Raman effect25. We note,
in particular, that although wave turbulence theory is independent
of the sign of the interactions11, in practice modulation instability
dominates in the self-focusing case; the dynamics are controlled
by the potential (rather than kinetic) energy of the system, the
(inverse) momentum cascade is unidirectional, self-similar spectra
are transient, and ‘condensation’ appears in the form of coherent
soliton structures24,26. Localized intensity structures (zeros in the
field) are present here from the random-phase initial conditions,
but these did not participate actively in the dynamics. We did not
observe waveguide filtering from each zero27 or an increase in their
number during propagation, for example from vortex unbinding in
a Berezinskii–Kosterlitz–Thouless transition16.

For long propagation distances (analogous to long evolution
times), dynamics should consist of fluctuations around the
equilibrium state. Unfortunately, the finite length of the crystal
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Figure 2 | Condensation results as a function of decreasing kinetic energy (increasing correlation length). a–e, Real-space (top row) and k-space
(bottom row) intensity pictures for initial wave kinetic energies E/N of 13.3 (a), 10.4 (b), 7.1 (c), 4.6 (d) and 1.8m−1 (e). The nonlinear interaction strength
is fixed by maintaining a constant applied voltage bias of−500 V.
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Figure 3 |Approach to equilibrium and condensation. Shown are results for fixed interaction strength, obtained by maintaining a constant voltage of
−500 V across the crystal. a,b, Chemical potential (a) and condensate fraction (b) versus energy per particle E/N. Dots are experimental values, obtained
from an average over 10 runs, while solid lines are theoretical fits. Error bars show variance. The red line in b corresponds to the limit µ→µc= k2

0/(2kL),
in which the fundamental Bessel mode k0 becomes macroscopically populated. The blue line takes into account finite-size effects, µ 6=µc (see
Supplementary Information). c,d, Spectral profiles of random-phase input (black line) and equilibrium output (red, blue lines) from numerical simulation
(c) and experimental measurements (d). The green line in c is a reference k−2 spectrum predicted from Rayleigh–Jeans theory. Inset in d is a least-squares
fit of the experiment.

inhibits a direct measurement of this. Indeed, all nonlinear
propagation experiments are limited by the finite extent of
their media. To get around this, we introduce a novel feedback
mechanism which takes advantage of the digital nature of our
input/output devices (Fig. 1): the output field is recorded in the
CCD (charge-coupled device) cameras and then used as the input
field of the SLMs. This field recycling creates an effectively infinite
crystal, subject to discretization errors, band-pass filtering, and
bit-depth limitations. After a second pass through the crystal, the
peak of the condensate remains within 10% of the single-pass value
(with a correlation coefficient of 0.95 between the two spectral
profiles). These results, in combination with longer-propagation

simulations (Fig. 3c), confirm that the optical field has reached a
(quasi-) equilibrium state.

The feedback method enables a scenario not possible in classical
gas dynamics: selective and controlled adjustment of each particle’s
momentum. To show reversibility, we change the sign of all the
particle velocities; in the wave case, this is achieved by phase con-
jugation. As shown in Fig. 5b, the SLM can act as an ideal ‘Maxwell
demon,’28 reversing the flow of condensation and recovering the
initial ‘thermal’ cloud (with a correlation coefficient of 0.88). This
experimentally proves that although the ensemble dynamics de-
scribed by equation (1) always evolves towards maximum entropy,
the individual wave collisions are formally reversible (conservative);
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Figure 4 | Condensation results as a function of increasing interaction strength. a–g, Real-space (top row) and k-space (bottom row) intensity pictures at
input (a), linear output (b),−100 V (c),−200 V (d),−300 V(e),−400 V (f) and−500 V(e). The power N and correlation length are kept constant, so
that the growth of the condensate is due to an increase in nonlinear coupling strength.
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Figure 5 |Digital feedback, showing a steady-state condensate in the forward direction and reversible behaviour in the backward direction. The digital
output recorded in the CCD cameras is fed back into the spatial light modulator (SLM) and used directly as input (a) or digitally phase-conjugated and
then recycled through the crystal (b). In a the condensate remains constant after a second round of forward propagation; whereas in b the condensate
reverts back to the initial ‘thermal’ cloud after propagation backwards.

as wavepackets collapse, the uncondensed ones retain all the
information necessary to reconstruct the dynamical history.

The dynamics has interesting consequences when the waves have
signal content. For example, recent methods of imaging using spa-
tial nonlinearity have shown that wave mixing can greatly increase
signal coherence29 and resolution19 while the information content
of the system remains constant. More generally, information capac-
ity is defined by entropy, yet the ability to reach capacity and the cor-
responding transmission dynamics are typically treated as separate
issues28. Here, we have demonstrated that nonlinear interactions
link the parameters of propagating beams, with entropy both
constraining and driving the thermodynamics of classical waves.

Methods
The initial condition consists of a random-phase beam with Gaussian statistics and
a correlation length lc= 2π/1k:

ψ̃
(
kx ,ky

)
=

1
√
2π1k2

exp

−
(
k2x +k

2
y

)
21k2

exp[iφ̃(kx ,ky)] FT
←→ψ

(
x,y

)
= ψ0

(
x,y

)
exp

[
iφ
(
x,y

)]

where φ̃(kx ,ky ) is delta-correlated. This input approximates a Maxwell–Boltzmann
distribution and, in particular, ensures that all initial odd moments are
zero (necessary to maintain a zero mean field). Inside the nonlinear
crystal, the slowly varying field ψ obeys the Schrödinger equation
i∂zψ + (1/2kL)∇2

⊥
ψ + (kL/n0)1n(|ψ |2)ψ = 0, where the photorefractive

screening nonlinearity 1n=−(1/2)n30rijE0(I/1+ I ) (ref. 18). In this expression,
n0 = 2.3, rij is the electro-optic coefficient, I = |ψ |2 is in units of background
illumination, and E0 is generated by applying a bias across the crystal. At the
maximum applied voltage of−500V, the nonlinear index change is measured to be
1n/n0=−6.4×10−4. These experimental parameters were used for the numerical
results in Fig. 3c, obtained by direct simulation of the Schrödinger equation for
a spatially confined speckle beam of radius 1.5mm (using a numerical grid of
1,024×1,024 points and an average over 20 realizations).

The real and Fourier space intensity at the output face of the crystal are
imaged using CCD cameras. Phase information is retrieved experimentally
using a phase shifting algorithm30, where the reference beam is shifted using a
piezo-actuated mirror in increments of λ0/4±5 nm. The range of the cameras
is limited to 12 bits. In Fig. 3d, the output power spectrum was measured
using a series of different intensity filters, re-scaled and summed together to
produce the entire power spectrum over 4.5 decades of intensity (2.7 decades of
wavenumber). However, the input power spectrum was Gaussian only within
two decades of intensity, below which it deviates from a quadratic falloff. Despite
this, the system dynamically self-adjusts to the asymptotic k−2 spectrum over
the full recorded range.
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