Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Quantum simulations with trapped ions


In the field of quantum simulation, methods and tools are explored for simulating the dynamics of a quantum system of interest with another system that is easier to control and measure. Systems of trapped atomic ions can be accurately controlled and manipulated, a large variety of interactions can be engineered with high precision and measurements of relevant observables can be obtained with nearly 100% efficiency. Here, we discuss prospects for quantum simulations using systems of trapped ions, and review the available set of quantum operations and first proof-of-principle experiments for both analog and digital quantum simulations with trapped ions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Principles of quantum simulation.
Figure 2: Trapped-ion quantum system used for quantum-information processing.
Figure 3: Magnetization data.
Figure 4: Quantum simulation of relativistic scattering (Klein tunnelling) for linear potentials.
Figure 5: Quantum toolbox with a string of trapped ions.
Figure 6: Digital simulations of a two-spin system interacting through Ising, XY and XYZ interaction plus a transverse field.
Figure 7: Digital simulations of four- and six-spin systems.


  1. 1

    Zoller, P. et al. Quantum information processing and communication. Strategic report on current status, visions and goals for research in Europe. Eur. Phys. J. D 36, 203–228 (2005).

    Article  ADS  Google Scholar 

  2. 2

    Schmidt, P. O. et al. Spectroscopy using quantum logic. Science 309, 749–752 (2005).

    Article  ADS  Google Scholar 

  3. 3

    Weihs, G., Jennewein, T., Simon, C., Weinfurter, H. & Zeilinger, A. Violation of Bell’s inequality under strict Einstein locality conditions. Phys. Rev. Lett. 81, 5039–5043 (1998).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. 4

    Rowe, M. A. et al. Experimental violation of a Bell’s inequality with efficient detection. Nature 409, 791–794 (2001).

    Article  ADS  Google Scholar 

  5. 5

    Shor, P. W. Proc. 35th Annual Symposium on Foundations of Computer Science 124–134 (IEEE Computer Soc. Press, 1994).

    Book  Google Scholar 

  6. 6

    Feynman, R. Simulating physics with computers. Int. J. Theoret. Phys. 21, 467–488 (1982).

    Article  MathSciNet  Google Scholar 

  7. 7

    Lloyd, S. Universal quantum simulators. Science 273, 1073–1078 (1996).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. 8

    Buluta, I. & Nori, F. Quantum simulators. Science 326, 108–111 (2009).

    Article  ADS  Google Scholar 

  9. 9

    Trotter, H. F. On the product of semi-groups of operators. Proc. Am. Math. Soc. 10, 545–551 (1959).

    Article  MathSciNet  MATH  Google Scholar 

  10. 10

    Army Research Office ARDA Quantum Computation Roadmap (Los Alamos National Laboratory, 2005), available at

  11. 11

    Vandersypen, L. M. K. & Chuang, I. L. NMR techniques for quantum control and computation. Rev. Mod. Phys. 76, 1037–1069 (2005).

    Article  ADS  Google Scholar 

  12. 12

    Brown, K. L., Munro, W. J. & Kendon, V. M. Using quantum computers for quantum simulation. Entropy 12, 2268–2307 (2010).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. 13

    Jaksch, D., Bruder, C., Cirac, J. I., Gardiner, C. W. & Zoller, P. Cold bosonic atoms in optical lattices. Phys. Rev. Lett. 81, 3108–3111 (1998).

    Article  ADS  Google Scholar 

  14. 14

    Lewenstein, M. et al. Ultracold atomic gases in optical lattices: Mimicking condensed matter physics and beyond. Adv. Phys. 56, 243–379 (2007).

    Article  ADS  Google Scholar 

  15. 15

    Jane, E., Vidal, G., Dür, W., Zoller, P. & Cirac, J. I. Simulation of quantum dynamics with quantum optical systems. Quant. Inf. Comp. 3, 15–37 (2003).

    MathSciNet  MATH  Google Scholar 

  16. 16

    Bloch, I., Dalibard, J. & Nascimbéne, S. Quantum simulations with ultracold quantum gases. Nature Phys. 8, 267–276 (2012).

    Article  ADS  Google Scholar 

  17. 17

    Bakr, W. S., Gillen, J. I., Peng, A., Fölling, S. & Greiner, M. A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice. Nature 462, 74–77 (2009).

    Article  ADS  Google Scholar 

  18. 18

    Sherson, J. F. et al. Single-atom-resolved fluorescence imaging of an atomic Mott insulator. Nature 467, 68–72 (2010).

    Article  ADS  Google Scholar 

  19. 19

    O’Brien, J. L. Optical quantum computing. Science 318, 1567–1570 (2007).

    Article  ADS  Google Scholar 

  20. 20

    Lanyon, B. P. et al. Towards quantum chemistry on a quantum computer. Nature Chem. 2, 106–111 (2010).

    ADS  Article  Google Scholar 

  21. 21

    Ma, X., Dakic, B., Naylor, W., Zeilinger, A. & Walther, P. Quantum simulation of the wavefunction to probe frustrated Heisenberg spin systems. Nature Phys. 7, 399–405 (2011).

    Article  ADS  Google Scholar 

  22. 22

    Aspuru-Guzik, A. & Walther, P. Photonic quantum simulators. Nature Phys. 8, 285–291 (2012).

    Article  ADS  Google Scholar 

  23. 23

    Cirac, J. I. & Zoller, P. Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091–4094 (1995).

    Article  ADS  Google Scholar 

  24. 24

    Schoelkopf, R. J. & Girvin, S. M. Wiring up quantum systems. Nature 451, 664–669 (2008).

    Article  ADS  Google Scholar 

  25. 25

    Houck, A. A., Türeci, H. E. & Koch, J. On-chip quantum simulation with superconducting circuits. Nature Phys. 8, 292–299 (2012).

    Article  ADS  Google Scholar 

  26. 26

    Hanson, R. & Awschalom, D. D. Coherent manipulation of single spins in semiconductors. Nature 453, 1043–1049 (2008).

    Article  ADS  Google Scholar 

  27. 27

    Blatt, R. & Wineland, D. Entangled states of trapped atomic ions. Nature 453, 1008–1015 (2008).

    Article  ADS  Google Scholar 

  28. 28

    Häffner, H., Roos, C. F. & Blatt, R. Quantum computing with trapped ions. Phys. Rep. 469, 155–203 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  29. 29

    Nagourney, W., Sandberg, J. & Dehmelt, H. Shelved optical electron amplifier: Observation of quantum jumps. Phys. Rev. Lett. 56, 2797–2799 (1986).

    Article  ADS  Google Scholar 

  30. 30

    Myerson, A. H. et al. High-fidelity readout of trapped-ion qubits. Phys. Rev. Lett. 100, 200502 (2008).

    Article  ADS  Google Scholar 

  31. 31

    Leibfried, D., Blatt, R., Monroe, C. & Wineland, D. Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75, 281–324 (2003).

    Article  ADS  Google Scholar 

  32. 32

    Turchette, Q. A. et al. Heating of trapped ions from the quantum ground state. Phys. Rev. A 61, 063418 (2000).

    Article  ADS  Google Scholar 

  33. 33

    Deslauriers, L. et al. Scaling and suppression of anomalous heating in ion traps. Phys. Rev. Lett. 97, 103007 (2006).

    Article  ADS  Google Scholar 

  34. 34

    Jaynes, E. T. & Cummings, F. W. Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE 51, 89–109 (1963).

    Article  Google Scholar 

  35. 35

    Blockley, C. A., Walls, D. F. & Risken, H. Quantum collapses and revivals in a quantized trap. Europhys. Lett. 17, 509–514 (1992).

    Article  ADS  Google Scholar 

  36. 36

    Cirac, J. I., Blatt, R., Parkins, A. S. & Zoller, P. Quantum collapse and revival in the motion of a single trapped ion. Phys. Rev. A 49, 1202–1207 (1994).

    Article  ADS  Google Scholar 

  37. 37

    Wineland, D. J. et al. Trapped ion quantum simulator. Proc. Am. Math. Soc. T76, 147–151 (1998).

    Google Scholar 

  38. 38

    Meekhof, D. M., Monroe, C., King, B. E., Itano, W. M. & Wineland, D. J. Generation of nonclassical motional states of a trapped atom. Phys. Rev. Lett. 76, 1796–1799 (1996).

    Article  ADS  Google Scholar 

  39. 39

    Leibfried, D. et al. Experimental determination of the motional quantum state of a trapped atom. Phys. Rev. Lett. 77, 4281–4285 (1996).

    Article  ADS  Google Scholar 

  40. 40

    Zähringer, F. et al. Realization of a quantum walk with one and two trapped ions. Phys. Rev. Lett. 104, 100503 (2010).

    Article  ADS  Google Scholar 

  41. 41

    Raizen, M. C., Bergquist, J. C., Gilligan, J. M., Itano, W. M. & Wineland, D. J. Linear trap for high-accuracy spectroscopy of stored ions. J. Mod. Opt. 39, 233–242 (1992).

    Article  ADS  Google Scholar 

  42. 42

    Schmidt-Kaler, F. et al. Realization of the Cirsac–Zoller controlled-NOT quantum gate. Nature 422, 408–411 (2003).

    Article  ADS  Google Scholar 

  43. 43

    Sørensen, A. & Mølmer, K. Quantum computation with ions in thermal motion. Phys. Rev. Lett. 82, 1971–1974 (1999).

    Article  ADS  Google Scholar 

  44. 44

    Sackett, C. A. et al. Experimental entanglement of four particles. Nature 404, 256–259 (2000).

    Article  ADS  Google Scholar 

  45. 45

    Leibfried, D. et al. Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate. Nature 422, 412–415 (2003).

    Article  ADS  Google Scholar 

  46. 46

    Benhelm, J., Kirchmair, G., Roos, C. F. & Blatt, R. Towards fault-tolerant quantum computing with trapped ions. Nature Phys. 4, 463–466 (2008).

    Article  ADS  Google Scholar 

  47. 47

    Kirchmair, G. et al. Deterministic entanglement of ions in thermal states of motion. New J. Phys. 11, 023002 (2009).

    Article  ADS  Google Scholar 

  48. 48

    Porras, D. & Cirac, J. I. Effective quantum spin systems with trapped ions. Phys. Rev. Lett. 92, 207901 (2004).

    Article  ADS  Google Scholar 

  49. 49

    Johanning, M., Varón, A. F. & Wunderlich, C. Quantum simulations with cold trapped ions. J. Phys. B 42, 154009 (2009).

    Article  ADS  Google Scholar 

  50. 50

    Troyer, M. & Wiese, U-J. Computational complexity and fundamental limitations to fermionic quantum Monte Carlo simulations. Phys. Rev. Lett. 94, 170201 (2005).

    Article  ADS  Google Scholar 

  51. 51

    Sandvik, A. W. Ground states of a frustrated quantum spin chain with long-range interactions. Phys. Rev. Lett. 104, 137204 (2010).

    Article  ADS  Google Scholar 

  52. 52

    Mintert, F. & Wunderlich, C. Ion-trap quantum logic using long-wavelength radiation. Phys. Rev. Lett. 87, 257904 (2001).

    Article  ADS  Google Scholar 

  53. 53

    Friedenauer, H., Schmitz, H., Glueckert, J., Porras, D. & Schaetz, T. Simulating a quantum magnet with trapped ions. Nature Phys. 4, 757–761 (2008).

    Article  ADS  Google Scholar 

  54. 54

    Kim, K. et al. Entanglement and tunable spin–spin couplings between trapped ions using multiple transverse modes. Phys. Rev. Lett. 103, 120502 (2009).

    Article  ADS  Google Scholar 

  55. 55

    Kim, K. et al. Quantum simulation of frustrated Ising spins with trapped ions. Nature 465, 590–593 (2010).

    Article  ADS  Google Scholar 

  56. 56

    Edwards, E. E. et al. Quantum simulation and phase diagram of the transverse-field Ising model with three atomic spins. Phys. Rev. B 82, 060412 (2010).

    Article  ADS  Google Scholar 

  57. 57

    Islam, R. et al. Onset of a quantum phase transition with a trapped ion quantum simulator. Nature Commun. 2, 377 (2011).

    Article  Google Scholar 

  58. 58

    Kim, K. et al. Quantum simulation of the transverse Ising model with trapped ions. New J. Phys. 13, 105003 (2011).

    Article  ADS  Google Scholar 

  59. 59

    Schneider, C., Porras, D. & Schaetz, T. Experimental quantum simulations of many-body physics with trapped ions. Rep. Prog. Phys. 75, 024401 (2012).

    Article  ADS  Google Scholar 

  60. 60

    Lin, G-D., Monroe, C. & Duan, L-M. Sharp phase transitions in a small frustrated network of trapped ion spins. Phys. Rev. Lett. 106, 230402 (2011).

    Article  ADS  Google Scholar 

  61. 61

    Lamata, L., León, J., Schätz, T. & Solano, E. Dirac equation and quantum relativistic effects in a single trapped ion. Phys. Rev. Lett. 98, 253005 (2007).

    Article  ADS  Google Scholar 

  62. 62

    Alsing, P. M., Dowling, J. P. & Milburn, G. J. Ion trap simulations of quantum fields in an expanding universe. Phys. Rev. Lett. 94, 220401 (2005).

    Article  ADS  Google Scholar 

  63. 63

    Menicucci, N. C. & Milburn, G. J. Single trapped ion as a time-dependent harmonic oscillator. Phys. Rev. A 76, 052105 (2007).

    Article  ADS  Google Scholar 

  64. 64

    Horstmann, B., Reznik, B., Fagnocchi, S. & Cirac, J. I. Hawking radiation from an acoustic black hole on an ion ring. Phys. Rev. Lett. 104, 250403 (2010).

    Article  ADS  Google Scholar 

  65. 65

    Menicucci, N. C., Olson, S. J. & Milburn, G. J. Simulating quantum effects of cosmological expansion using a static ion trap. New J. Phys. 12, 095019 (2010).

    Article  ADS  Google Scholar 

  66. 66

    Schützhold, R. et al. Analogue of cosmological particle creation in an ion trap. Phys. Rev. Lett. 99, 201301 (2007).

    Article  ADS  Google Scholar 

  67. 67

    Gerritsma, R. et al. Quantum simulation of the Dirac equation. Nature 463, 68–71 (2010).

    Article  ADS  Google Scholar 

  68. 68

    Casanova, J., Garcia-Ripoll, J. J., Gerritsma, R., Roos, C. F. & Solano, E. Klein tunneling and Dirac potentials in trapped ions. Phys. Rev. A 82, 020101 (2010).

    Article  ADS  Google Scholar 

  69. 69

    Schrödinger, E. Über die kräftefreie Bewegung in der relativistischen Quantenmechanik. Sitz. Preuss. Akad. Wiss. Phys.-Math. Kl. 24, 418–428 (1930).

    MATH  Google Scholar 

  70. 70

    Klein, O. Die Reflexion von Elektronen an einem Potentialsprung nach der relativistischen Dynamik von Dirac. Z. Phys. 53, 157–165 (1929).

    Article  ADS  MATH  Google Scholar 

  71. 71

    Gerritsma, R. et al. Quantum simulation of the Klein paradox with trapped ions. Phys. Rev. Lett. 106, 060503 (2011).

    Article  ADS  MATH  Google Scholar 

  72. 72

    Lutterbach, L. & Davidovich, L. Method for direct measurement of the Wigner function in cavity QED and ion traps. Phys. Rev. Lett. 78, 2547–2550 (1997).

    Article  ADS  Google Scholar 

  73. 73

    Lougovski, P., Walther, H. & Solano, E. Instantaneous measurement of field quadrature moments and entanglement. Eur. Phys. J. D 38, 423–426 (2006).

    Article  ADS  Google Scholar 

  74. 74

    Wallentowitz, S. & Vogel, W. Reconstruction of the quantum mechanical state of a trapped ion. Phys. Rev. Lett. 75, 2932–2935 (1995).

    Article  ADS  Google Scholar 

  75. 75

    Casanova, J. et al. Quantum simulation of quantum field theories in trapped ions. Phys. Rev. Lett. 107, 260501 (2011).

    Article  ADS  Google Scholar 

  76. 76

    Brown, K. R., Clark, R. J. & Chuang, I. L. Limitations of quantum simulation examined by simulating a pairing hamiltonian using nuclear magnetic resonance. Phys. Rev. Lett. 97, 050504 (2006).

    Article  ADS  Google Scholar 

  77. 77

    Lanyon, B. P. et al. Universal digital quantum simulations with trapped ions. Science 334, 57–61 (2011).

    Article  ADS  Google Scholar 

  78. 78

    Nebendahl, V., Häffner, H. & Roos, C. F. Optimal control of entangling operations for trapped-ion quantum computing. Phys. Rev. A 79, 012312 (2009).

    Article  ADS  Google Scholar 

  79. 79

    Barreiro, J. T. et al. An open-system quantum simulator with trapped ions. Nature 470, 486–491 (2011).

    Article  ADS  Google Scholar 

  80. 80

    Ospelkaus, C. et al. Trapped-ion quantum logic gates based on oscillating magnetic fields. Phys. Rev. Lett. 101, 090502 (2008).

    Article  ADS  Google Scholar 

  81. 81

    Johanning, M. et al. Individual addressing of trapped ions and coupling of motional and spin states using rf radiation. Phys. Rev. Lett. 102, 073004 (2009).

    Article  ADS  Google Scholar 

  82. 82

    Ospelkaus, C. et al. Microwave quantum logic gates for trapped ions. Nature 476, 181–184 (2011).

    Article  ADS  Google Scholar 

  83. 83

    Khromova, A. et al. A designer spin-molecule implemented with trapped ions in a magnetic gradient. Preprint at (2011).

  84. 84

    Wang, S. X., Labaziewicz, J., Ge, Y., Shewmon, R. & Chuang, I. L. Individual addressing of ions using magnetic field gradients in a surface-electrode ion trap. Appl. Phys. Lett. 94, 094103 (2009).

    Article  ADS  Google Scholar 

  85. 85

    Welzel, J. et al. Designing spin–spin interactions with one and two dimensional ion crystals in planar micro traps. Eur. Phys. J. D 65, 285–297 (2011).

    Article  ADS  Google Scholar 

  86. 86

    Dubin, D. H. E. Theory of structural phase transitions in a trapped Coulomb crystal. Phys. Rev. Lett. 71, 2753–2756 (1993).

    Article  ADS  Google Scholar 

  87. 87

    Fishman, S., De Chiara, G., Calarco, T. & Morigi, G. Structural phase transitions in low-dimensional ion crystals. Phys. Rev. B 77, 064111 (2008).

    Article  ADS  Google Scholar 

  88. 88

    Lin, G-D. et al. Large-scale quantum computation in an anharmonic linear ion trap. Europhys. Lett. 86, 60004 (2009).

    Article  ADS  Google Scholar 

  89. 89

    Schaetz, T., Friedenauer, A., Schmitz, H., Petersen, L. & Kahra, S. Towards (scalable) quantum simulations in ion traps. J. Mod. Opt. 54, 2317–2325 (2007).

    Article  ADS  Google Scholar 

  90. 90

    Chiaverini, J. & Lybarger, J, W. E. Laserless trapped-ion quantum simulations without spontaneous scattering using microtrap arrays. Phys. Rev. A 77, 022324 (2008).

    Article  ADS  Google Scholar 

  91. 91

    Clark, R. J., Lin, T., Brown, K. R. & Chuang, I. L. A two-dimensional lattice ion trap for quantum simulation. J. App. Phys. 105, 013114 (2009).

    Article  ADS  Google Scholar 

  92. 92

    Schmied, R., Wesenberg, J. H. & Leibfried, D. Optimal surface-electrode trap lattices for quantum simulation with trapped ions. Phys. Rev. Lett. 102, 233002 (2009).

    Article  ADS  Google Scholar 

  93. 93

    Kumph, M., Brownnutt, M. & Blatt, R. Two-dimensional arrays of radio-frequency ion traps with addressable interactions. New J. Phys. 13, 073043 (2011).

    Article  ADS  Google Scholar 

  94. 94

    Schmied, R., Wesenberg, J. H. & Leibfried, D. Quantum simulation of the hexagonal Kitaev model with trapped ions. New J. Phys. 13, 115011 (2011).

    Article  ADS  Google Scholar 

  95. 95

    Porras, D., Marquardt, F., von Delft, J. & Cirac, J. I. Mesoscopic spin-boson models of trapped ions. Phys. Rev. A 78, 010101 (2008).

    Article  ADS  Google Scholar 

  96. 96

    Porras, D. & Cirac, J. I. Bose–Einstein condensation and strong-correlation behavior of phonons in ion traps. Phys. Rev. Lett. 93, 263602 (2004).

    Article  ADS  Google Scholar 

  97. 97

    Porras, D. & Cirac, J. I. Quantum manipulation of trapped ions in two dimensional Coulomb crystals. Phys. Rev. Lett. 96, 250501 (2006).

    Article  ADS  Google Scholar 

  98. 98

    Bermudez, A., Schätz, T. & Porras, D. Synthetic gauge fields for vibrational excitations of trapped ions. Phys. Rev. Lett. 107, 150501 (2011).

    Article  ADS  Google Scholar 

  99. 99

    Brown, K. R. et al. Coupled quantized mechanical oscillators. Nature 471, 196–199 (2011).

    Article  ADS  Google Scholar 

  100. 100

    Harlander, M., Lechner, R., Brownnutt, M., Blatt, R. & Hänsel, W. Trapped-ion antennae for the transmission of quantum information. Nature 471, 200–203 (2011).

    Article  ADS  Google Scholar 

  101. 101

    Schmied, R., Roscilde, T., Murg, V., Porras, D. & Cirac, J. I. Quantum phases of trapped ions in an optical lattice. New. J. Phys. 10, 045017 (2008).

    Article  ADS  Google Scholar 

  102. 102

    Müller, M., Liang, L., Lesanovsky, I. & Zoller, P. Trapped Rydberg ions: From spin chains to fast quantum gates. New J. Phys. 10, 093009 (2008).

    Article  ADS  Google Scholar 

  103. 103

    Schmidt-Kaler, F. et al. Rydberg excitation of trapped cold ions: A detailed case study. New J. Phys. 13, 075014 (2011).

    Article  ADS  Google Scholar 

  104. 104

    Mitchell, T. B. et al. Direct observations of structural phase transitions in planar crystallized ion plasmas. Science 282, 1290–1293 (1998).

    Article  ADS  Google Scholar 

  105. 105

    Sawyer, B. C. et al. Spectroscopy and thermometry of drumhead modes in a mesoscopic trapped-ion crystal using entanglement. Preprint at (2012).

  106. 106

    Schneider, C., Enderlein, M., Huber, T. & Schaetz, T. Optical trapping of an ion. Nature Photon. 4, 772–775 (2010).

    Article  ADS  Google Scholar 

  107. 107

    Pruttivarasin, T., Ramm, M., Talukdar, I., Kreuter, A. & Häffner, H. Trapped ions in optical lattices for probing oscillator chain models. New J. Phys. 13, 075012 (2011).

    Article  ADS  Google Scholar 

  108. 108

    Benassi, A., Vanossi, A. & Tosatti, E. Nanofriction in cold ion traps. Nature Commun. 2, 236 (2011).

    Article  ADS  Google Scholar 

  109. 109

    Zipkes, C., Palzer, S., Sias, C. & Köhl, M. A trapped single ion inside a Bose–Einstein condensate. Nature 464, 388–391 (2010).

    Article  ADS  Google Scholar 

  110. 110

    Schmid, S., Härter, A. & Denschlag, J. H. Dynamics of a cold trapped ion in a Bose–Einstein condensate. Phys. Rev. Lett. 105, 133202 (2010).

    Article  ADS  Google Scholar 

  111. 111

    Aspuru-Guzik, A., Dutoi, A. D., Love, P. J. & Head-Gordon, M. Simulated quantum computation of molecular energies. Science 309, 1704–1707 (2005).

    Article  ADS  Google Scholar 

  112. 112

    Hauke, P., Cucchietti, F. M., Tagliacozzo, L., Lewenstein, M. & Deutsch, I. On the robustness of quantum simulators. Preprint at (2011).

  113. 113

    Lidar, D. A., Chuang, I. L. & Whaley, K. B. Decoherence-free subspaces for quantum computation. Phys. Rev. Lett. 81, 2594–2597 (1998).

    Article  ADS  Google Scholar 

  114. 114

    Viola, L., Knill, E. & Lloyd, S. Dynamical decoupling of open quantum systems. Phys. Rev. Lett. 82, 2417–2421 (1999).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  115. 115

    Bennett, C. H., DiVincenzo, D. P., Smolin, J. A. & Wootters, W. K. Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824–3851 (1996).

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references


We gratefully acknowledge support by the Austrian Science Fund (FWF), by the European Commission (SCALA, AQUTE networks, STREP project MICROTRAP), by the Intelligence Advanced Research Projects Activity and by the Institut für Quanteninformation GmbH.

Author information



Corresponding author

Correspondence to R. Blatt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Blatt, R., Roos, C. Quantum simulations with trapped ions. Nature Phys 8, 277–284 (2012).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing