Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Local probing of propagating acoustic waves in a gigahertz echo chamber

Abstract

In the same way that micro-mechanical resonators resemble guitar strings and drums, surface acoustic waves resemble the sound these instruments produce, but moving over a solid surface rather than through air. In contrast with oscillations in suspended resonators, such propagating mechanical waves have not before been studied near the quantum mechanical limits. Here, we demonstrate local probing of surface acoustic waves with a displacement sensitivity of 30 amRMS Hz−1/2 and detection sensitivity on the single-phonon level after averaging, at a frequency of 932 MHz. Our probe is a piezoelectrically coupled single-electron transistor, which is sufficiently fast, non-destructive and localized to enable us to track pulses echoing back and forth in a long acoustic cavity, self-interfering and ringing the cavity up and down. We project that strong coupling to quantum circuits will enable new experiments, and hybrids using the unique features of surface acoustic waves. Prospects include quantum investigations of phonon–phonon interactions, and acoustic coupling to superconducting qubits for which we present favourable estimates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sample layout.
Figure 2: Response of the SET to SAWs in the steady state.
Figure 3: Dynamic and frequency-dependent response of the SET to SAWs.
Figure 4: Detecting SAW pulses on the single-phonon level.

Similar content being viewed by others

References

  1. Datta, S. Surface Acoustic Wave Devices (Prentice-Hall, 1986).

    Google Scholar 

  2. Campbell, C. Surface Acoustic Wave Devices for Mobile and Wireless Communications (Academic, 1998).

    Google Scholar 

  3. Kukushkin, I. V. et al. Ultrahigh-frequency surface acoustic waves for finite wave-vector spectroscopy of two-dimensional electrons. Appl. Phys. Lett. 85, 4526–4528 (2004).

    Article  ADS  Google Scholar 

  4. Rocheleau, T. et al. Preparation and detection of a mechanical resonator near the ground state of motion. Nature 463, 72–75 (2010).

    Article  ADS  Google Scholar 

  5. Teufel, J. D., Donner, T., Castellanos-Beltran, M. A., Harlow, J. W. & Lehnert, K. W. Nanomechanical motion measured with an imprecision below that at the standard quantum limit. Nature Nanotech. 4, 820–823 (2009).

    Article  ADS  Google Scholar 

  6. O’Connell, A. D. et al. Quantum ground state and single-phonon control of a mechanical resonator. Nature 464, 697–703 (2010).

    Article  ADS  Google Scholar 

  7. Teufel, J. D. et al. Circuit cavity electromechanics in the strong-coupling regime. Nature 471, 204–208 (2011).

    Article  ADS  Google Scholar 

  8. El Habti, A., Bastien, F., Bigler, E. & Thorvaldsson, T. High-frequency surface acoustic wave devices at very low temperature: Application to loss mechanisms evaluation. J. Acoust. Soc. Am. 100, 272–277 (1996).

    Article  ADS  Google Scholar 

  9. Yamanouchi, K., Nakagawa, H. & Odagawa, H. GHz-range surface acoustic wave low loss filter at super low temperature. Proc. Meet. Eur. Freq. Time Forum/IEEE Int. Freq. Cont. Symp. 2, 911–914 (1999).

    Google Scholar 

  10. Huang, X. M. H., Feng, X. L., Zorman, C. A., Mehregany, M. & Roukes, M. L. VHF, UHF and microwave frequency nanomechanical resonators. New J. Phys. 7, 247 (2005).

    Article  ADS  Google Scholar 

  11. Hüttel, A. K et al. Carbon nanotubes as ultrahigh quality factor mechanical resonators. Nano Lett. 9, 2547–2552 (2009).

    Article  ADS  Google Scholar 

  12. Eichler, A. et al. Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene. Nature Nanotech. 6, 339–342 (2011).

    Article  ADS  Google Scholar 

  13. Averin, D. V. & Likharev, K. K. Coulomb blockade of single-electron tunneling, and coherent oscillations in small tunnel junctions. J. Low Temp. Phys. 62, 345–373 (1986).

    Article  ADS  Google Scholar 

  14. Brenning, H., Kafanov, S., Duty, T., Kubatkin, S. & Delsing, P. An ultrasensitive radio-frequency single-electron transistor working up to 4.2 K. J. Appl. Phys. 100, 114321 (2006).

    Article  ADS  Google Scholar 

  15. Knobel, R. G. & Cleland, A. N. Nanometre-scale displacement sensing using a single electron transistor. Nature 424, 291–293 (2003).

    Article  ADS  Google Scholar 

  16. Pashkin, Yu. A. et al. Detection of mechanical resonance of a single-electron transistor by direct current. Appl. Phys. Lett. 96, 263513 (2010).

    Article  ADS  Google Scholar 

  17. LaHaye, M. D., Buu, O., Camarota, B. & Schwab, K. C. Approaching the quantum limit of a nanomechanical resonator. Science 304, 74–77 (2004).

    Article  ADS  Google Scholar 

  18. Knobel, R. & Cleland, A. N. Piezoelectric displacement sensing with a single-electron transistor. Appl. Phys. Lett. 81, 2258–2260 (2002).

    Article  ADS  Google Scholar 

  19. Zhang, Y. & Blencowe, M. P. Sensitivity of a piezoelectric micromechanical displacement detector based on the radio-frequency single-electron transistor. J. Appl. Phys. 92, 7550–7555 (2002).

    Article  ADS  Google Scholar 

  20. Pekola, J. P., Zorin, A. B. & Paalanen, M. A. Control of single-electron tunneling by surface acoustic waves. Phys. Rev. B 50, 11255–11259 (1994).

    Article  ADS  Google Scholar 

  21. Schoelkopf, R. J., Wahlgren, P., Kozhevnikov, A. A., Delsing, P. & Prober, D. E. The radio-frequency single-electron transistor (RF-SET): A fast and ultrasensitive electrometer. Science 280, 1238–1242 (1998).

    Article  ADS  Google Scholar 

  22. Reilly, D. J. & Buehler, T. M. Direct measurement of the intrinsic RC roll-off in a radio frequency single electron transistor operated as a microwave mixer. Appl. Phys. Lett. 87, 163122 (2005).

    Article  ADS  Google Scholar 

  23. Knobel, R., Yung, C. S. & Cleland, A. N. Single-electron transistor as a radio-frequency mixer. Appl. Phys. Lett. 81, 532–534 (2002).

    Article  ADS  Google Scholar 

  24. Anetsberger, G. et al. Near-field cavity optomechanics with nanomechanical oscillators. Nature Phys. 5, 909–914 (2009).

    Article  ADS  Google Scholar 

  25. Abbott, B. P. et al. LIGO: The laser interferometer gravitational-wave observatory. Rep. Prog. Phys. 72, 076901 (2009).

    Article  ADS  Google Scholar 

  26. Naber, W., Fujisawa, T., Liu, H. W. & van der Wiel, W. G. Surface-acoustic-wave-induced transport in a double quantum dot. Phys. Rev. Lett. 96, 136807 (2006).

    Article  ADS  Google Scholar 

  27. Thomas, Ch., Heiderhoff, R. & Balk, L. J. 200 femtometer sensitivity for near-field analysis of surface acoustic waves in a scanning electron/scanning probe microscope hybrid system. Appl. Phys. Lett. 90, 144106 (2007).

    Article  ADS  Google Scholar 

  28. Loudon, R. The Quantum Theory of Light (Oxford Univ. Press, 2000).

    MATH  Google Scholar 

  29. Houck, A. A. et al. Generating single microwave photons in a circuit. Nature 449, 328–331 (2007).

    Article  ADS  Google Scholar 

  30. Clerk, A. A., Devoret, M. H., Girvin, S. M., Marquardt, F. & Schoelkopf, R. J. Introduction to quantum noise, measurement and amplification. Rev. Mod. Phys. 82, 1155–1208 (2010).

    ADS  MathSciNet  MATH  Google Scholar 

  31. Xue, W. W. et al. Measurement of quantum noise in a single-electron transistor near the quantum limit. Nature Phys. 5, 660–664 (2009).

    Article  ADS  Google Scholar 

  32. Naik, A. et al. Cooling a nanomechanical resonator with quantum back-action. Nature 443, 193–196 (2006).

    Article  ADS  Google Scholar 

  33. Johansson, G., Tornberg, L. & Wilson, C. M. Fast quantum limited readout of a superconducting qubit using a slow oscillator. Phys. Rev. B 74, 100504 (2006).

    Article  ADS  Google Scholar 

  34. LaHaye, M. D., Suh, J., Echternach, P. M., Schwab, K. C. & Roukes, M. L. Nanomechanical measurements of a superconducting qubit. Nature 459, 960–964 (2009).

    Article  ADS  Google Scholar 

  35. Helmer, F., Mariantoni, M., Solano, E. & Marquardt, F. Quantum nondemolition photon detection in circuit QED and the quantum Zeno effect. Phys. Rev. A 79, 052115 (2009).

    Article  ADS  Google Scholar 

  36. Grangier, P., Levenson, J. A. & Poizat, J-P. Quantum non-demolition measurements in optics: A review and some recent experimental results. Nature 396, 537–542 (1998).

    Article  ADS  Google Scholar 

  37. Bozyigit, D. et al. Antibunching of microwave-frequency photons observed in correlation measurements using linear detectors. Nature Phys. 7, 154–158 (2010).

    Article  ADS  Google Scholar 

  38. de Lima, M. M., Kosevich, Yu. A., Santos, P. V. & Cantarero, A. Surface acoustic Bloch oscillations, the Wannier–Stark ladder, and Landau–Zener tunneling in a solid. Phys. Rev. Lett. 104, 165502 (2010).

    Article  ADS  Google Scholar 

  39. Koch, J. et al. Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76, 042319 (2007).

    Article  ADS  Google Scholar 

  40. Schoelkopf, R. J. & Girvin, S. M. Wiring up quantum systems. Nature 451, 664–669 (2008).

    Article  ADS  Google Scholar 

  41. Hoi, I-C. et al. Demonstration of a single-photon router in the microwave regime. Phys. Rev. Lett. 107, 073601 (2011).

    Article  ADS  Google Scholar 

  42. Astafiev, O. et al. Resonance fluorescence of a single artificial atom. Science 327, 840–843 (2010).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank K. W. Lehnert and J. Kinaret for discussions, and T. Claeson for commenting on the manuscript. Financial support by the EU FW6 grant ‘ACDET II’, the European Research Council, the Swedish VR and the Wallenberg foundation is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

M.V.G. did the experimental work, and analysed the data with support from P.D. All authors contributed to the theoretical analysis. P.V.S. contributed expertise about SAWs. P.D. supervised the project. All authors contributed to the writing of the manuscript.

Corresponding authors

Correspondence to Martin V. Gustafsson or Per Delsing.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2203 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gustafsson, M., Santos, P., Johansson, G. et al. Local probing of propagating acoustic waves in a gigahertz echo chamber. Nature Phys 8, 338–343 (2012). https://doi.org/10.1038/nphys2217

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2217

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing