Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Probing and controlling non-Born–Oppenheimer dynamics in highly excited molecular ions

Abstract

In the extreme ultraviolet and soft-X-ray regions of the spectrum, light–matter interaction is dominated by photoionization. In molecular systems, the sudden removal of an electron will initiate ultrafast electronic and nuclear dynamics in the residual molecular ion. A particularly interesting aspect of these dynamics is the correlated motions of electrons and nuclei, an understanding of which lies at the heart of chemistry. Here we use a few-femtosecond high-harmonic pulse and a weak infrared laser pulse to initiate and probe the explosion of a triatomic N2O+ molecular ion in real time, in a regime dominated by coupled electron–electron and electron–nuclear dynamics. We also show that the branching ratio of bond breaking can be altered in the presence of the laser field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustration of double ionization of N2O and subsequent two-body fragmentation.
Figure 2: Time-dependent ionization yield and kinetic energy release of Coulomb explosion fragments.
Figure 3: Illustration of the coupled electron–nuclear ionization dynamics.
Figure 4: Momentum distribution of the Coulomb explosion fragments.

Similar content being viewed by others

References

  1. Popmintchev, T., Chen, M. C., Arpin, P., Murnane, M. M. & Kapteyn, H. C. The attosecond nonlinear optics of bright coherent X-ray generation. Nature Photon. 4, 822–832 (2010).

    Article  ADS  Google Scholar 

  2. Ullrich, J. et al. Recoil-ion momentum spectroscopy. J. Phys. B. 30, 2917–2974 (1997).

    Article  ADS  Google Scholar 

  3. Becker, U. & Shirley, D. A. VUV and Soft X-Ray Photoionization (Springer, 1996).

    Book  Google Scholar 

  4. Uiberacker, M. et al. Attosecond real-time observation of electron tunnelling in atoms. Nature 446, 627–632 (2007).

    Article  ADS  Google Scholar 

  5. Drescher, M., Hentschel, M., Kienberger, R. & Uiberacker, M. Time-resolved atomic inner-shell spectroscopy. Nature 419, 803–807 (2002).

    Article  ADS  Google Scholar 

  6. Sandhu, A. S. et al. Observing the creation of electronic Feshbach resonances in soft X-ray-induced O2 dissociation. Science 322, 1081–1085 (2008).

    Article  ADS  Google Scholar 

  7. Gagnon, E. et al. Soft X-ray-driven femtosecond molecular dynamics. Science 317, 1374–1378 (2007).

    Article  ADS  Google Scholar 

  8. Cao, W. et al. Dynamic modification of the fragmentation of COq+ excited states generated with high-order harmonics. Phys. Rev. A 82, 043410 (2010).

    Article  ADS  Google Scholar 

  9. Hatano, Y. Spectroscopy and dynamics of molecular superexcited states. Aspects of primary processes of radiation chemistry. Radiat. Phys. Chem. 67, 187–198 (2003).

    Article  ADS  Google Scholar 

  10. Hjelte, I. et al. Evidence for ultra-fast dissociation of molecular water from resonant Auger spectroscopy. Chem. Phys. Lett. 334, 151–158 (2001).

    Article  ADS  Google Scholar 

  11. Eland, J. H. D. Dynamics of double photoionization in molecules and atoms. Adv. Chem. Phys. 141, 103–151 (2009).

    Google Scholar 

  12. Scheit, S., Cederbaum, L. S. & Meyer, H. D. Time-dependent interplay between electron emission and fragmentation in the interatomic Coulombic decay. J. Chem. Phys. 118, 2092–2107 (2003).

    Article  ADS  Google Scholar 

  13. Sisourat, N. et al. Ultralong-range energy transfer by interatomic Coulombic decay in an extreme quantum system. Nature Phys. 6, 508–511 (2010).

    Article  ADS  Google Scholar 

  14. Strasser, D., Haber, L. H., Doughty, B. & Leone, S. R. Ultrafast predissociation of superexcited nitrogen molecules. Mol. Phys. 106, 275–280 (2008).

    Article  ADS  Google Scholar 

  15. Eland, J. H. D. Double photoionisation spectra of methane, ammonia and water. Chem. Phys. 323, 391–396 (2006).

    Article  Google Scholar 

  16. Levis, R. J., Menkir, G. M. & Rabitz, H. Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses. Science 292, 709–713 (2001).

    Article  ADS  Google Scholar 

  17. Daniel, C. et al. Deciphering the reaction dynamics underlying optimal control laser fields. Science 299, 536–539 (2003).

    Article  ADS  Google Scholar 

  18. Field, T. A. & Eland, J. H. D. Lifetimes of metastable molecular doubly-charged ions. Chem. Phys. Lett. 211, 436–442 (1993).

    Article  ADS  Google Scholar 

  19. Hsieh, S. & Eland, J. H. D. Reaction dynamics of three-body dissociations in triatomic molecules from single-photon double ionization studied by a time- and position-sensitive coincidence method. J. Phys. B. 30, 4515–4534 (1997).

    Article  ADS  Google Scholar 

  20. Price, S. D., Eland, J. H. D., Fournier, P. G., Fournier, J. & Millie, P. Electronic states and decay mechanisms of the N2O2+ dication. J. Chem. Phys. 88, 1511–1515 (1988).

    Article  ADS  Google Scholar 

  21. Levasseur, N. & Millie, P. Potential-energy surfaces of the low-lying states of N2O++ and photodissociation mechanisms. J. Chem. Phys. 92, 2974–2983 (1990).

    Article  ADS  Google Scholar 

  22. Holland, D. M. P., Macdonald, M. A. & Hayes, M. A. A photoelectron study of the inner valence molecular-orbitals of N2O. Chem. Phys. 142, 291–300 (1990).

    Article  Google Scholar 

  23. Domcke, W. et al. Experimental and theoretical investigation of the complete valence shell ionization spectra of CO2 and N2O. Chem. Phys. 40, 171–183 (1979).

    Article  Google Scholar 

  24. Ehara, M., Yasuda, S. & Nakatsuji, H. Fine theoretical spectroscopy using SAC-CI general-R method: Outer- and inner-valence ionization spectra of N2O and HN3 . Z. Phys. Chem. 217, 161–176 (2003).

    Article  Google Scholar 

  25. Erman, P. et al. Ultrashort-lived non-Rydberg doubly excited resonances observed in molecular photoionization. Phys. Rev. Lett. 76, 4136–4139 (1996).

    Article  ADS  Google Scholar 

  26. Wang, H. et al. Attosecond time-resolved autoionization of argon. Phys. Rev. Lett. 105, 143002 (2010).

    Article  ADS  Google Scholar 

  27. Li, W. et al. Visualizing electron rearrangement in space and time during the transition from a molecule to atoms. Proc. Natl Acad. Sci. USA 107, 20219–20222 (2010).

    Article  ADS  Google Scholar 

  28. Miron, C., Simon, M., Leclercq, N., Hansen, D. L. & Morin, P. Site-selective photochemistry of core excited molecules: Role of the internal energy. Phys. Rev. Lett. 81, 4104–4107 (1998).

    Article  ADS  Google Scholar 

  29. Kinmond, E., Eland, J. H. D. & Karlsson, L. Dissociation of N2O+ ions from the valence states reached by one-photon photoionisation. Int. J. Mass. Spec. 187, 437–447 (1999).

    Article  Google Scholar 

  30. Masuoka, T. Observation of anisotropic angular-distribution of ionic fragments in the dissociation of CO2+. Phys. Rev. A 50, 2298–2303 (1994).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from Department of Energy (DOE) Basic Energy Sciences (BES) Chemical Sciences and used facilities provided by the National Science Foundation Engineering Research Center for Extreme Ultraviolet Science (NSF EUV ERC). We thank O. Vendrell and R. Santra for critical comments of the manuscript, and X-M. Tong illuminating discussions. We also thank A. Czasch and T. Jahnke from RoentDek for the COLTRIMS support, and Y. Liu for providing us the EUV multilayer mirrors.

Author information

Authors and Affiliations

Authors

Contributions

X.Z., M.M.M. and H.C.K. conceived the project. X.Z., P.R. and C.W.H. performed the experiments and analysed the data. All authors contributed to the data interpretation and paper.

Corresponding authors

Correspondence to X. Zhou or M. M. Murnane.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 476 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, X., Ranitovic, P., Hogle, C. et al. Probing and controlling non-Born–Oppenheimer dynamics in highly excited molecular ions. Nature Phys 8, 232–237 (2012). https://doi.org/10.1038/nphys2211

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2211

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing