Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chiral superconductivity from repulsive interactions in doped graphene

Abstract

Chiral superconductivity, which breaks time-reversal symmetry, can exhibit a wealth of fascinating properties that are highly sought after for nanoscience applications. We identify doped graphene monolayer as a system where chiral superconductivity can be realized. In this material, a unique situation arises at a doping where the Fermi surface is nested and the density of states is singular. In this regime, d-wave superconductivity can emerge from repulsive electron–electron interactions. Using a renormalization group method, we argue that superconductivity dominates over all competing orders for generic weak repulsive interactions. Superconductivity develops simultaneously in two degenerate d-wave pairing channels. We argue that the resulting superconducting state is of chiral type, with the phase of the superconducting order parameter winding by 4π around the Fermi surface. Realization of this state in doped graphene will prove that superconductivity can emerge from electron–electron repulsion, and will open the door to applications of chiral superconductivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chiral superconductivity arises when graphene is doped to the Van Hove singularity at the saddle point (M points of the Brillouin zone).
Figure 2: Possible interactions in the patch model.
Figure 3: Flow of couplings with renormalization group scale y, starting from repulsive interactions.
Figure 4: Possible superconducting orders that could develop at the M point.

Similar content being viewed by others

References

  1. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    Article  ADS  Google Scholar 

  2. DasSarma, S., Adam, S., Hwang, E. H. & Rossi, E. Electronic transport in two-dimensional graphene. Rev. Mod. Phys. 83, 407–470 (2011).

    Article  ADS  Google Scholar 

  3. Guinea, F. Viewpoint: Peeling back the layers or doubling the stakes? Calculations of bilayer graphene reveal the possibility of new electronic phases. Physics 3, 1 (2010).

    Article  Google Scholar 

  4. Gonzalez, J. Kohn–Luttinger superconductivity in graphene. Phys. Rev. B 78, 205431 (2008).

    Article  ADS  Google Scholar 

  5. Valenzuela, B. & Vozmediano, M. A. H. Pomeranchuk instability in doped graphene. New. J. Phys. 10, 113009 (2008).

    Article  ADS  Google Scholar 

  6. Martin, I. & Batista, C. D. Itinerant electron-driven chiral magnetic ordering and spontaneous quantum Hall effect in triangular lattice models. Phys. Rev. Lett. 101, 156402 (2008).

    Article  ADS  Google Scholar 

  7. Li, T. Spontaneous quantum Hall effect in quarter doped Hubbard model on honeycomb lattice and its possible realization in quarter doped graphene system. Preprint at http://arxiv.org/abs/1103.2420 (2011).

  8. Makogon, D., van Gelderen, R., Roldan, R. & Morais Smith, C. Spin-density-wave instability in graphene doped near the van Hove singularity. Phys. Rev. B 84, 125404 (2011).

    Article  ADS  Google Scholar 

  9. Volovik, G. E. Quantized hall effect in superfluid helium-3 film. Phys. Lett. A 128, 277–279 (1988).

    Article  ADS  Google Scholar 

  10. Sigrist, M. & Ueda, K. Phenomenological theory of unconventional superconductivity. Rev. Mod. Phys. 63, 239–311 (1991).

    Article  ADS  Google Scholar 

  11. Vojta, M., Zhang, Y. & Sachdev, S. Quantum phase transitions in d-wave superconductors. Phys. Rev. Lett. 85, 4940–4943 (2000).

    Article  ADS  Google Scholar 

  12. Moore, G. & Read, N. Nonabelions in the fractional quantum hall effect. Nucl. Phys. B360, 362–396 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  13. Ivanov, D. A. Non-Abelian statistics of half-quantum vortices in p-wave superconductors. Phys. Rev. Lett. 86, 268–271 (2001).

    Article  ADS  Google Scholar 

  14. Fu, L. & Kane, C. L. Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. Phys. Rev. Lett. 100, 096407 (2008).

    Article  ADS  Google Scholar 

  15. Qi, X. L., Hughes, T., Raghu, S. & Zhang, S-C. Time-reversal-invariant topological superconductors and superfluids in two and three dimensions. Phys. Rev. Lett. 102, 187001 (2009).

    Article  ADS  Google Scholar 

  16. Cheng, M., Sun, K., Galitski, V. & Das Sarma, S. Stable topological superconductivity in a family of two-dimensional fermion models. Phys. Rev. B 81, 024504 (2010).

    Article  ADS  Google Scholar 

  17. Kopnin, N. B. & Salomaa, M. M. Mutual friction in superfluid 3He: Effects of bound states in the vortex core. Phys. Rev. B 44, 9667–9677 (1991).

    Article  ADS  Google Scholar 

  18. Volovik, G. E. & Yakovenko, V. M. Fractional charge, spin and statistics of solitons in superfluid 3He film. J. Phys. Condens. Matter 1, 5263–5274 (1989).

    Article  ADS  Google Scholar 

  19. Laughlin, R. B. Magnetic induction of d x 2 − y 2 +id xy order in high-Tc superconductors. Phys. Rev. Lett. 80, 5188–5191 (1998).

    Article  ADS  Google Scholar 

  20. Volovik, G. E. On edge states in superconductors with time inversion symmetry breaking. J. Exp. Theor. Phys. Lett. 66, 522–527 (1997).

    Article  Google Scholar 

  21. Senthil, T., Marston, J. B. & Fisher, M. P. A. Spin quantum Hall effect in unconventional superconductors. Phys. Rev. B 60, 4245–4254 (1999).

    Article  ADS  Google Scholar 

  22. Horovitz, B. & Golub, A. Superconductors with broken time-reversal symmetry: Spontaneous magnetization and quantum Hall effects. Phys. Rev. B 68, 214503 (2003).

    Article  ADS  Google Scholar 

  23. Sato, M., Takahashi, Y. & Fujimoto, S. Non-Abelian topological orders and Majorana fermions in spin-singlet superconductors. Phys. Rev. B 82, 134521 (2010).

    Article  ADS  Google Scholar 

  24. Mao, L., Shi, J., Niu, Q. & Zhang, C. Superconducting phase with a chiral f-wave pairing symmetry and Majorana fermions induced in a hole-doped semiconductor. Phys. Rev. Lett. 106, 157003 (2011).

    Article  ADS  Google Scholar 

  25. Mackenzie, A. P. & Maeno, Y. The superconductivity of Sr2RuO4 and the physics of spin-triplet pairing. Rev. Mod. Phys. 75, 657–712 (2003).

    Article  ADS  Google Scholar 

  26. Black-Schaffer, A. M. & Doniach, S. Resonating valence bonds and mean-field d-wave superconductivity in graphite. Phys. Rev. B 75, 134512 (2007).

    Article  ADS  Google Scholar 

  27. Uchoa, B. & Castro Neto, A. H. Superconducting states of pure and doped graphene. Phys. Rev. Lett. 98, 146801 (2007).

    Article  ADS  Google Scholar 

  28. Kohn, W. & Luttinger, J. M. New mechanism for superconductivity. Phys. Rev. Lett. 15, 524–526 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  29. Schulz, H. J. Superconductivity and antiferromagnetism in the two-dimensional Hubbard model: Scaling theory. Europhys. Lett. 4, 609–615 (1987).

    Article  ADS  Google Scholar 

  30. Dzyaloshinskii, I. E. Maximal increase of the superconducting transition temperature due to the presence of van Hove singularities. Sov. Phys. JETP 66, 848–854 (1987).

    Google Scholar 

  31. Furukawa, N., Rice, T. M. & Salmhofer, M. Truncation of a two-dimensional Fermi surface due to quasiparticle gap formation at the saddle points. Phys. Rev. Lett. 81, 3195–3198 (1998).

    Article  ADS  Google Scholar 

  32. McChesney, J. L. et al. Extended van Hove singularity and superconducting instability in doped graphene. Phys. Rev. Lett. 104, 136803 (2010).

    Article  ADS  Google Scholar 

  33. Ye, J. T. et al. Liquid-gated interface superconductivity on an atomically flat film. Nature Mater. 9, 125–128 (2010).

    Article  ADS  Google Scholar 

  34. LeHur, K. & Rice, T. M. Superconductivity close to the Mott state: From condensed-matter systems to superfluidity in optical lattices. Ann. Phys. 324, 1452–1515 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  35. Maiti, S. & Chubukov, A. V. Renormalization group flow, competing phases and the structure of superconducting gap in multiband models of iron-based superconductors. Phys. Rev. B 82, 214515 (2010).

    Article  ADS  Google Scholar 

  36. Thomale, R., Platt, C., Hanke, W. & Bernevig, B. A. Mechanism for explaining differences in the order parameters of FeAs-based and FeP-based pnictide superconductors. Phys. Rev. Lett. 106, 187003 (2011).

    Article  ADS  Google Scholar 

  37. Wallace, P. R. The band theory of graphite. Phys. Rev. 71, 622–634 (1947).

    Article  ADS  Google Scholar 

  38. Son, D. T. Superconductivity by long-range colour magnetic interaction in high-density quark matter. Phys. Rev. D 59, 094019 (1999).

    Article  ADS  Google Scholar 

  39. Moon, E. G. & Chubukov, A. V. Quantum-critical pairing with varying exponents. J. Low Temp. Phys. 161, 263–281 (2010).

    Article  ADS  Google Scholar 

  40. Pathak, S., Shenoy, V. B. & Baskaran, G. Possible high-temperature superconducting state with a d+i d pairing symmetry in doped graphene. Phys. Rev. B 81, 085431 (2010).

    Article  ADS  Google Scholar 

  41. Honerkamp, C. Density waves and Cooper pairing on the honeycomb lattice. Phys. Rev. Lett. 100, 146404 (2008).

    Article  ADS  Google Scholar 

  42. Roy, B. & Herbut, I. F. Unconventional superconductivity on honeycomb lattice: Theory of Kekule order parameter. Phys. Rev. B 82, 035429 (2010).

    Article  ADS  Google Scholar 

  43. Mineev, V. P. & Samokhin, K. V. Introduction to Unconventional Superconductivity 69 (Gordon and Breach Science Publishers, 1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

R.N., L.S.L. and A.V.C. jointly identified the problem, performed the analysis and wrote the paper.

Corresponding author

Correspondence to A. V. Chubukov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 335 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nandkishore, R., Levitov, L. & Chubukov, A. Chiral superconductivity from repulsive interactions in doped graphene. Nature Phys 8, 158–163 (2012). https://doi.org/10.1038/nphys2208

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2208

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing