Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Giant superfluorescent bursts from a semiconductor magneto-plasma

Abstract

Superradiance—the cooperative decay of excited dipoles—has recently been discussed in a diverse range of contexts in which coherent coupling of constituent particles governs their cooperative dynamics: cavity quantum electrodynamics, quantum phase transitions and plasmonics. Here we observe intense, delayed bursts of coherent radiation from a photo-excited semiconductor and interpret it as superfluorescence, where macroscopic coherence spontaneously appears from initially incoherent electron–hole pairs. The coherence then decays superradiantly, with a concomitant abrupt decrease in population from full inversion to zero. This is the first observation of superfluorescence in a dense semiconductor plasma, where decoherence is much faster than radiative decay, a situation never encountered in atomic cases. Nonetheless, a many-body cooperative state of phased electron–hole ‘dipoles’ does emerge at high magnetic fields and low temperatures, producing giant superfluorescent pulses. The solid-state realization of superfluorescence resulted in unprecedented controllability, promising tunable sources of coherent pulses.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Superfluorescence from a collection of dipoles (atoms, molecules, ions or excitons).
Figure 2: Observation of a sudden population drop through ultrafast pump–probe spectroscopy.
Figure 3: Observation of delayed bursts of radiation through time-resolved photoluminescence spectroscopy.
Figure 4: Theoretical simulations of superfluorescence from an ultradense electron–hole plasma in a semiconductor quantum well in a perpendicular magnetic field of 17 T.

Similar content being viewed by others

References

  1. Dicke, R. H. Coherence in spontaneous radiation processes. Phys. Rev. 93, 99–110 (1954).

    Article  ADS  Google Scholar 

  2. Scully, M. O. & Svidzinsky, A. A. The super of superradiance. Science 325, 1510–1511 (2009).

    Article  Google Scholar 

  3. Baumann, K., Guerlin, C., Brennecke, F. & Esslinger, T. Dicke quantum phase transition with a superfluid gas in an optical cavity. Nature 464, 1301–1306 (2010).

    Article  ADS  Google Scholar 

  4. Sonnefraud, Y. et al. Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities. ACS Nano 4, 1664–1670 (2010).

    Article  Google Scholar 

  5. Martı´n-Cano, D., Martı´n-Moreno, L., Garcı´a-Vidal, F. J. & Moreno, E. Resonance energy transfer and superradiance mediated by plasmonic nanowaveguides. Nano Lett. 10, 3129–3134 (2010).

    Article  ADS  Google Scholar 

  6. Bonifacio, R. & Lugiato, L. A. Cooperative radiation processes in two-level systems: Superfluorescence. Phys. Rev. A 11, 1507–1521 (1975).

    Article  ADS  Google Scholar 

  7. Chemla, D. S. & Shah, J. Many-body and correlation effects in semiconductors. Nature 411, 549–557 (2001).

    Article  ADS  Google Scholar 

  8. Butov, L. V., Lai, C. W., Ivanov, A. L., Gossard, A. C. & Chemla, D. S. Towards Bose–Einstein condensation of excitons in potential traps. Nature 417, 47–52 (2002).

    Article  ADS  Google Scholar 

  9. Kasprzak, J. et al. Bose–Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006).

    Article  ADS  Google Scholar 

  10. Li, X., Zhang, T., Borca, C. N. & Cundiff, S. T. Many-body interactions in semiconductors probed by optical two-dimensional Fourier transform spectroscopy. Phys. Rev. Lett. 96, 057406 (2006).

    Article  ADS  Google Scholar 

  11. Balili, R., Hartwell, V., Snoke, D., Pfeiffer, L. & West, K. Bose–Einstein condensation of microcavity polaritons in a trap. Science 316, 1007–1010 (2007).

    Article  ADS  Google Scholar 

  12. Turner, D. B. & Nelson, K. A. Coherent measurements of high-order electronic correlations in quantum wells. Nature 466, 1089–1092 (2010).

    Article  ADS  Google Scholar 

  13. Deng, H., Haug, H. & Yamamoto, Y. Exciton-polariton Bose–Einstein condensation. Rev. Mod. Phys. 82, 1489–1537 (2010).

    Article  ADS  Google Scholar 

  14. Zheleznyakov, V. V., Kocharovskii, V. V. & Kocharovskii, Vl. V. Polarization waves and super-radiance in active media. Sov. Phys. Usp. 32, 835–870 (1989).

    Article  ADS  Google Scholar 

  15. Skribanowitz, N., Herman, I. P., MacGillivray, J. C. & Feld, M. S. Observation of Dicke superradiance in optically pumped HF gas. Phys. Rev. Lett. 30, 309–312 (1973).

    Article  ADS  Google Scholar 

  16. Gibbs, H. M., Vrehen, Q. H. F. & Hikspoors, H. M. J. Single-pulse superfluorescence in cesium. Phys. Rev. Lett. 39, 547–550 (1977).

    Article  ADS  Google Scholar 

  17. Florian, R., Schwan, L. O. & Schmid, D. Superradiance and high-gain mirrorless laser activity of O2-centers in KCl. Solid State Commun. 42, 55–57 (1982).

    Article  ADS  Google Scholar 

  18. Malcuit, M. S., Maki, J. J., Simkin, D. J. & Boyd, R. W. Transition from superfluorescence to amplified spontaneous emission. Phys. Rev. Lett. 59, 1189–1192 (1987).

    Article  ADS  Google Scholar 

  19. Zinov’ev, P. V. et al. Superradiance in a diphenyl crystal containing pyrene. Sov. Phys. JETP 58, 1129–1133 (1983).

    Google Scholar 

  20. Jho, Y. D. et al. Cooperative recombination of a quantized high-density electron–hole plasma in semiconductor quantum wells. Phys. Rev. Lett. 96, 237401 (2006).

    Article  ADS  Google Scholar 

  21. Jho, Y. D. et al. Cooperative recombination of electron–hole pairs in semiconductor quantum wells under quantizing magnetic fields. Phys. Rev. B 81, 155314 (2010).

    Article  ADS  Google Scholar 

  22. Björk, G., Pau, S., Jacobson, J. & Yamamoto, Y. Wannier exciton superradiance in a quantum-well microcavity. Phys. Rev. B 50, 17336–17348 (1994).

    Article  ADS  Google Scholar 

  23. Ding, C. R. et al. Super-radiance of excitons in a single ZnO nanostructure. Appl. Phys. Lett. 93, 151902 (2008).

    Article  ADS  Google Scholar 

  24. Meinardi, F., Cerminara, M., Sassella, A., Bonifacio, R. & Tubino, R. Superradiance in molecular H aggregates. Phys. Rev. Lett. 91, 247401 (2003).

    Article  ADS  Google Scholar 

  25. Siegman, A. E. Lasers 547–557 (Univ. Science Books, 1986).

    Google Scholar 

  26. Dai, D. C. & Monkman, A. P. Observation of superfluorescence from a quantum ensemble of coherent excitons in a ZnTe crystal: Evidence for spontaneous Bose–Einstein condensation of excitons. Phys. Rev. B 84, 115206 (2011).

    Article  ADS  Google Scholar 

  27. Jho, Y. D et al. Role of Coulomb interactions in dark-bright magneto-exciton mixing in strained quantum wells. Phys. Rev. B 72, 045340 (2005).

    Article  ADS  Google Scholar 

  28. Lee, J. et al. Robust, stable single-exciton emission from an ultrahigh-density magneto-plasma. Preprint at http://arxiv.org/abs/1009.3067v1 (2010).

Download references

Acknowledgements

This work was supported by the National Science Foundation through grants DMR-1006663 and ECS-0547019. A portion of this work was performed at the National High Magnetic Field Laboratory, supported by NSF Co-operative Agreement No. DMR-0084173 and by the State of Florida. We thank G. Solomon for providing us with the InGaAs/GaAs quantum well sample used in this study.

Author information

Authors and Affiliations

Authors

Contributions

G.T.N., J-H.K. and J.L. performed the measurements presented in this manuscript, in collaboration with S.A.M. J.L. did most of the initial work of setting up the streak camera. Y.W., A.K.W. and A.A.B. developed the theoretical model and performed simulations. D.H.R. and J.K. provided overall supervision and guidance on the experimental aspects. All authors contributed to data analysis and interpretation as well as the writing of the manuscript.

Corresponding author

Correspondence to Junichiro Kono.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 961 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Timothy Noe II, G., Kim, JH., Lee, J. et al. Giant superfluorescent bursts from a semiconductor magneto-plasma. Nature Phys 8, 219–224 (2012). https://doi.org/10.1038/nphys2207

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2207

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing