Article | Published:

Optical cavity cooling of mechanical modes of a semiconductor nanomembrane

Nature Physics volume 8, pages 168172 (2012) | Download Citation

Abstract

Mechanical oscillators can be optically cooled using a technique known as optical-cavity back-action. Cooling of composite metal–semiconductor mirrors, dielectric mirrors and dielectric membranes has been demonstrated. Here we report cavity cooling of mechanical modes in a high-quality-factor and optically active semiconductor nanomembrane. The cooling is a result of electron–hole generation by cavity photons. Consequently, the cooling factor depends on the optical wavelength, varies drastically in the vicinity of the semiconductor bandgap, and follows the excitonic absorption behaviour. The resultant photo-induced rigidity is large and a mode temperature cooled from room temperature down to 4 K is realized with 50 μW of light and a cavity finesse of just 10. Thermal stress due to non-radiative relaxation of the electron–hole pairs is the primary cause of the cooling. We also analyse an alternative cooling mechanism that is a result of electronic stress via the deformation potential, and outline future directions for cavity optomechanics with optically active semiconductors.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & Cavity cooling of a microlever. Nature 432, 1002–1005 (2004).

  2. 2.

    , , & Optical self-cooling of a deformable Fabry–Perot cavity in the classical limit. Phys. Rev. B 78, 035309 (2008).

  3. 3.

    et al. Self-cooling of a micromirror by radiation-pressure. Nature 444, 67–70 (2006).

  4. 4.

    , , , & Radiation pressure cooling and optomechanical instability of a micromirror. Nature 444, 71–74 (2006).

  5. 5.

    , , , & Radiation pressure cooling of a micromechanical oscillator using dynamical backaction. Phys. Rev. Lett. 97, 243905 (2006).

  6. 6.

    et al. An all-optical trap for a gram-scale mirror. Phys. Rev. Lett. 98, 150802 (2007).

  7. 7.

    et al. Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature 452, 72–75 (2008).

  8. 8.

    , , & Cavity optomechanics with stoichiometric SiN films. Phys. Rev. Lett. 103, 207204 (2009).

  9. 9.

    & Cavity optomechanics: Back-action at the mesoscale. Science 321, 1172–1176 (2008).

  10. 10.

    & Optomechanics of deformable optical cavities. Nature Photon. 3, 201–205 (2009).

  11. 11.

    & Trend: Optomechanics. Physics 2, 40 (2009).

  12. 12.

    et al. Sideband cooling of micromechanical motion to the quantum ground state. Nature 475, 359–363 (2011).

  13. 13.

    et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478, 89–92 (2011).

  14. 14.

    et al. High frequency GaAs nano-optomechanical disk resonator. Phys. Rev. Lett. 105, 263903 (2010).

  15. 15.

    et al. Wavelength-sized GaAs optomechanical resonators with gigahertz frequency. Appl. Phys. Lett. 98, 113108 (2011).

  16. 16.

    et al. Vibration amplification, damping, and self-oscillations in micromechanical resonators induced by optomechanical coupling through carrier excitation. Phys. Rev. Lett. 106, 036801 (2011).

  17. 17.

    et al. Carrier-mediated optomechanical coupling in GaAs cantilevers. Phys. Rev. B 84, 014305 (2011).

  18. 18.

    , & Laser cooling of a nanomechanical resonator mode to its quantum ground state. Phys. Rev. Lett. 92, 075507 (2004).

  19. 19.

    & Optical refrigeration. Nature Photon. 1, 693–699 (2007).

  20. 20.

    et al. Quantum nature of a strongly coupled single quantum dot-cavity system. Nature 445, 896–899 (2007).

  21. 21.

    et al. Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide. Phys. Rev. Lett. 101, 113903 (2008).

  22. 22.

    et al. High-Q optomechanical GaAs nanomembranes. Appl. Phys. Lett. 99, 243102 (2011).

  23. 23.

    et al. Interferometric measurements of the position of a macroscopic body: Towards observation of quantum limits. Phys. Rev. A 59, 1038–1044 (1999).

  24. 24.

    & Thermally excited vibrations of the mirrors of laser interferometer gravitational-wave detectors. Phys. Rev. D 52, 577–585 (1995).

  25. 25.

    Optical Properties of Solids (Oxford Univ. Press, 2001).

  26. 26.

    , & Doppler optomechanics of a photonic crystal. Phys. Rev. Lett. 100, 240801 (2008).

  27. 27.

    , , & Surface generation and detection of phonon by picosecond light pulses. Phys. Rev. B 34, 4129–4138 (1986).

  28. 28.

    , , , & Acoustic phonon generation and detection in GaAs/Al0.3Ga0.7As quantum wells with picosecond laser pulses. Phys. Rev. B 71, 115330 (2005).

  29. 29.

    & Thermal expansions from 2 to 40° K of Ge, Si, and four III–V compounds. Phys. Rev. 163, 779–790 (1967).

  30. 30.

    , , & Thermoelastic damping in GaAs micromechanical resonators. Phys. Status Solidi C 5, 2920–2922 (2008).

  31. 31.

    & Thermoelastic damping in micro- and nanomechanical systems. Phys. Rev. B 61, 5600–5609 (2000).

  32. 32.

    , , & Classical and quantum theory of photothermal cavity cooling of a mechanical oscillator. C. R. Phys. 12, 860–870 (2011).

  33. 33.

    , & Quantum noise in photothermal cooling. Phys. Rev. A 83, 033809 (2011).

Download references

Acknowledgements

We thank J. Appel, A. Grodecka-Grad, K. Hammerer, A. Imamog¯lu, H. J. Kimble, J. H. Müller, H. Okamoto, S. Schmid, J. M. Taylor, D. J. Wilson and A. Xuereb for discussions. This work was supported by the Japan Science and Technology Agency (JST), the Japan Society for the Promotion of Science (JSPS), the EU Project Q-ESSENCE, the Danish National Research Foundation Center for Quantum Optics (QUANTOP), the Danish Council for Independent Research (Technology and Production Science and Natural Science) and the DARPA QuASAR program.

Author information

Affiliations

  1. Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen, Denmark

    • K. Usami
    • , A. Naesby
    • , T. Bagci
    • , B. Melholt Nielsen
    • , J. Liu
    • , S. Stobbe
    • , P. Lodahl
    •  & E. S. Polzik
  2. DTU Fotonik, Department of Photonics Engineering, Technical University of Denmark, Ørsteds Plads 343, DK-2800 Kgs. Lyngby, Denmark

    • J. Liu

Authors

  1. Search for K. Usami in:

  2. Search for A. Naesby in:

  3. Search for T. Bagci in:

  4. Search for B. Melholt Nielsen in:

  5. Search for J. Liu in:

  6. Search for S. Stobbe in:

  7. Search for P. Lodahl in:

  8. Search for E. S. Polzik in:

Contributions

K.U., B.M.N. and E.S.P. designed the experiment. K.U., A.N. and T.B. worked on data collection and analysis. J.L. and S.S. fabricated the GaAs membranes. P.L. and E.S.P. planned and supervised the study. K.U. and E.S.P. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to E. S. Polzik.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphys2196

Further reading