Letter | Published:

Sculpting oscillators with light within a nonlinear quantum fluid

Nature Physics volume 8, pages 190194 (2012) | Download Citation

Subjects

Abstract

Seeing macroscopic quantum states directly remains an elusive goal. Particles with boson symmetry can condense into quantum fluids, producing rich physical phenomena as well as proven potential for interferometric devices1,2,3,4,5,6,7,8,9,10. However, direct imaging of such quantum states is only fleetingly possible in high-vacuum ultracold atomic condensates, and not in superconductors. Recent condensation of solid-state polariton quasiparticles, built from mixing semiconductor excitons with microcavity photons, offers monolithic devices capable of supporting room-temperature quantum states11,12,13,14 that exhibit superfluid behaviour15,16. Here we use microcavities on a semiconductor chip supporting two-dimensional polariton condensates to directly visualize the formation of a spontaneously oscillating quantum fluid. This system is created on the fly by injecting polaritons at two or more spatially separated pump spots. Although oscillating at tunable THz frequencies, a simple optical microscope can be used to directly image their stable archetypal quantum oscillator wavefunctions in real space. The self-repulsion of polaritons provides a solid-state quasiparticle that is so nonlinear as to modify its own potential. Interference in time and space reveals the condensate wavepackets arise from non-equilibrium solitons. Control of such polariton-condensate wavepackets demonstrates great potential for integrated semiconductor-based condensate devices.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    et al. Observation of Bose–Einstein condensation in a dilute atomic vapour. Science 269, 198–201 (1995).

  2. 2.

    et al. Bose–Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969–3973 (1995).

  3. 3.

    et al. Observation of interference between two Bose–Einstein condensates. Science 275, 637–641 (1997).

  4. 4.

    & Macroscopic quantum interference from atomic tunnel arrays. Science 282, 1686–1689 (1998).

  5. 5.

    et al. Josephson junction arrays with Bose–Einstein condensates. Science 293, 843–846 (2001).

  6. 6.

    et al. Contrast interferometry using Bose–Einstein condensates to measure h/m and α. Phys. Rev. Lett. 89, 140401 (2002).

  7. 7.

    et al. Atom Michelson interferometer on a chip using a Bose–Einstein condensate. Phys. Rev. Lett. 94, 090405 (2005).

  8. 8.

    & Bose Einstein condensation and liquid Helium. Phys. Rev. 104, 576–584 (1954).

  9. 9.

    & Bose–Einstein condensation of excitons in bilayer electron systems. Nature 432, 691–694 (2004).

  10. 10.

    et al. Coherent oscillations in an exciton–polariton Josephson junction. Phys. Rev. Lett. 105, 120403 (2010).

  11. 11.

    et al. Condensation of semiconductor microcavity exciton polaritons. Science 298, 199–202 (2002).

  12. 12.

    et al. Bose–Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006).

  13. 13.

    et al. Bose–Einstein condensation of microcavity polaritons in trap. Science 316, 1007–1010 (2007).

  14. 14.

    et al. Room-temperature polariton lasing in semiconductor microcavities. Phys. Rev. Lett. 98, 126405 (2007).

  15. 15.

    et al. Collective fluid dynamics of a polariton condensate in a semiconductor microcavity. Nature 457, 291–295 (2009).

  16. 16.

    et al. Superfluidity of polaritons in semiconductor microcavities. Nature Phys. 5, 805–810 (2009).

  17. 17.

    et al. Angle-resonant stimulated polariton amplifier. Phys. Rev. Lett. 84, 1547–1550 (2000).

  18. 18.

    , , & Microcavities (Oxford Univ. Press, 2007).

  19. 19.

    et al. Spontaneous formation and optical manipulation of extended polariton condensates. Nature Phys. 6, 860–864 (2010).

  20. 20.

    The discovery of tunnelling supercurrents. Rev. Mod. Phys. 46, 251–254 (1974).

  21. 21.

    , & Energy relaxation in one-dimensional polariton condensates. Phys. Rev. B 82, 245315 (2010).

  22. 22.

    & Excitations in a nonequilibrium Bose–Einstein condensate of exciton polaritons. Phys. Rev. Lett. 99, 140402 (2007).

  23. 23.

    & Spontaneous rotating vortex lattices in a pumped decaying condensate. Phys. Rev. Lett. 100, 250401 (2008).

  24. 24.

    & The world of the complex Ginzburg–Landau equation. Rev. Mod. Phys. 74, 99–143 (2002).

  25. 25.

    et al. Relaxation bottleneck and its suppression in semiconductor microcavities. Phys. Rev. B 62, R2283–R2286 (2000).

  26. 26.

    & Fundamentals of Photonics (Wiley, 1991).

  27. 27.

    , & Microresonator-based optical frequency combs. Science 332, 555–559 (2011).

  28. 28.

    et al. Dark solitons in Bose–Einstein condensates. Phys. Rev. Lett. 83, 5198–5201 (1999).

  29. 29.

    et al. Formation and propagation of matter–wave soliton trains. Nature 417, 150–153 (2002).

  30. 30.

    , & Oscillations of dark solitons in trapped Bose–Einstein condensates. Phys. Rev. E 72, 016615 (2005).

  31. 31.

    A GaAs polariton light-emitting diode operating near room temperature. Nature 453, 372–375 (2008).

Download references

Acknowledgements

L. Vina for comments, and grants EPSRC EP/G060649/1, EU CLERMONT4 235114, EU INDEX 289968, Spanish MEC (MAT2008-01555) and Greek GSRT program Irakleitos II. G.T. acknowledges financial support from an FPI scholarship of the Spanish MICINN.

Author information

Affiliations

  1. NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Ave, University of Cambridge, Cambridge, CB3 0HE, UK

    • G. Tosi
    • , G. Christmann
    •  & J. J. Baumberg
  2. Departamento de Fı´sica de Materiales, Universidad Autonóma, E28049 Madrid, Spain

    • G. Tosi
  3. Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, CB3 0WA, UK

    • N. G. Berloff
  4. Department of Materials Science and Technology, University of Crete, PO Box 2208, 71003 Heraklion, Crete, Greece

    • P. Tsotsis
    • , T. Gao
    •  & P. G. Savvidis
  5. Foundation for Research and Technology - Hellas, Institute of Electronic Structure and Laser, PO Box 1527, 71110 Heraklion, Crete, Greece

    • T. Gao
    • , Z. Hatzopoulos
    •  & P. G. Savvidis
  6. Department of Physics, University of Crete, PO Box 2208, 71003 Heraklion, Crete, Greece

    • Z. Hatzopoulos

Authors

  1. Search for G. Tosi in:

  2. Search for G. Christmann in:

  3. Search for N. G. Berloff in:

  4. Search for P. Tsotsis in:

  5. Search for T. Gao in:

  6. Search for Z. Hatzopoulos in:

  7. Search for P. G. Savvidis in:

  8. Search for J. J. Baumberg in:

Contributions

G.T. and G.C. performed the spectroscopy experiments, and together with J.J.B. analysed the data and wrote the manuscript. P.G.S. contributed to the preparation of the manuscript and together with P.T., T.G. and Z.H. designed and grew the microcavity samples, providing characterization spectroscopy to sustain high-quality performance. N.G.B. devised, coded, and carried out the modelling simulations.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to J. J. Baumberg.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Information

Videos

  1. 1.

    Supplementary Movie

    Supplementary Movie 1

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphys2182

Further reading