Abstract

In a fixed-field alternating-gradient (FFAG) accelerator, eliminating pulsed magnet operation permits rapid acceleration to synchrotron energies, but with a much higher beam-pulse repetition rate. Conceived in the 1950s, FFAGs are enjoying renewed interest, fuelled by the need to rapidly accelerate unstable muons for future high-energy physics colliders. Until now a ‘scaling’ principle has been applied to avoid beam blow-up and loss. Removing this restriction produces a new breed of FFAG, a non-scaling variant, allowing powerful advances in machine characteristics. We report on the first non-scaling FFAG, in which orbits are compacted to within 10 mm in radius over an electron momentum range of 12–18 MeV/c. In this strictly linear-gradient FFAG, unstable beam regions are crossed, but acceleration via a novel serpentine channel is so rapid that no significant beam disruption is observed. This result has significant implications for future particle accelerators, particularly muon and high-intensity proton accelerators.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , , , & Fixed-field alternating-gradient particle accelerators. Phys. Rev. 103, 1837–1859 (1956).

  2. 2.

    Particle Accelerator Conference 2003 452–456 (IEEE, 2003).

  3. 3.

    Neutrino factory design based on FFAG. Nucl. Instrum. Methods Phys. Res. A 503, 41–46 (2003).

  4. 4.

    & Muon acceleration in FFAG rings. Nucl. Instrum. Methods Phys. Res. A 538, 159–177 (2005).

  5. 5.

    The ISS Accelerator Working Group, Apollonio, M. et al. J. Instrum. 4,P07001 (2009).

  6. 6.

    , & Hadron cancer therapy complex using nonscaling fixed field alternating gradient accelerator and gantry design. Phys. Rev. ST Accel. Beams 10, 054701 (2007).

  7. 7.

    et al. International Particle Accelerator Conference 2010 112–114 (IPAC’10 Organizing Committee, 2010).

  8. 8.

    et al. Towards a dedicated high-intensity muon facility. Physica B 404, 1024–1027 (2009).

  9. 9.

    et al. European Particle Accelerator Conference 2006 2367–2369 (EPS-AG, 2006).

  10. 10.

    et al. European Particle Accelerator Conference 2000 581–583 (EPS-AG, 2000).

  11. 11.

    4th International Conference Physics Potential and Development of μ+μ Colliders, Transparency Book 693–696 (UCLA, 1997).

  12. 12.

    4th International Conference Physics Potential and Development of μ+μ Colliders, Transparency Book 696–698 (UCLA, 1997).

  13. 13.

    & Orbit and optics distortion in fixed field alternating gradient muon accelerators. Phys. Rev. ST Accel. Beams 10, 114001 (2007).

  14. 14.

    , & Particle Accelerator Conference 1999 3068–3070 (IEEE, 1999).

  15. 15.

    Snowmass 2001, SLAC-R-599, , T503 (SLAC, 2001).

  16. 16.

    & Snowmass 2001, SLAC-R-599, , T508 (SLAC, 2001).

  17. 17.

    European Particle Accelerator Conference 2002 1124–1126 (EPS-AG, 2002).

  18. 18.

    & Particle Accelerator Conference 2003 1831–1833 (IEEE, 2003).

  19. 19.

    & FFAGs for rapid acceleration. Nucl. Instrum. Methods Phys. Res. A 503, 445–457 (2003).

  20. 20.

    & Mechanisms for nonlinear acceleration in FFAGs with fixed rf. Nucl. Instrum. Methods Phys. Res. A 523, 25–49 (2004).

  21. 21.

    Minimizing longitudinal distortion in a nearly isochronous linear nonscaling fixed-field alternating gradient accelerator. Phys. Rev. ST Accel. Beams 9, 034001 (2006).

  22. 22.

    Resonance crossing and dynamic aperture in nonscaling fixed field alternating gradient accelerators. Phys. Rev. ST Accel. Beams 11, 094003 (2008).

  23. 23.

    Electron model: Lattice and performance. Nucl. Phys. B. Proc. Suppl. 155, 323–324 (2006).

  24. 24.

    et al. EMMA—The world’s first non-scaling FFAG. Nucl. Instrum. Methods Phys. Res. A 624, 1–19 (2010).

  25. 25.

    et al. International Particle Accelerator Conference 2010 3999–4001 (IPAC’10 Organizing Committee, 2010).

  26. 26.

    The EMMA main ring lattice. Nucl. Instrum. Methods Phys. Res. A 596, 276–284 (2008).

  27. 27.

    , & International Particle Accelerator Conference 2010 1134–1136 (IPAC’10 Organizing Committee, 2011).

  28. 28.

    et al. International Particle Accelerator Conference 2010 2350–2352 (IPAC’10 Organizing Committee, 2010).

  29. 29.

    , , & European Particle Accelerator Conference 2008 3386–3888 (EPS-AG, 2008).

  30. 30.

    19th International Conference on Cyclotrons and their Applications 390–394 (Institute of Modern Physics (IMP), 2010).

  31. 31.

    & European Particle Accelerator Conference 2004 1138–1140 (EPS-AG, 2004).

  32. 32.

    , & The measure of chaos by the numerical analysis of the fundamental frequencies. Application to the standard mapping. Physica D 56, 253–269 (1992).

Download references

Acknowledgements

We greatly appreciate the assistance of the Technology Department at STFC Daresbury Laboratory during the design and construction of EMMA. Our work is supported by the BASROC/CONFORM project (the UK Basic Technology Fund) under Engineering and Physical Sciences Research Council (EPSRC) Grant No. EP/E032869/1, the UK Neutrino Factory project under Particle Physics and Astronomy Research Council (PPARC) Contract No. 2054, Science and Technology Facilities Council (STFC), National Sciences and Engineering Research Council of Canada (NSERC) Grant No. SRO 328338-05 and the US Department of Energy under Contract No. DE-AC02-98CH10886 and DE-AC02-07CH11359.

Author information

Affiliations

  1. STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxon, OX11 0QX, UK

    • S. Machida
    • , R. Edgecock
    • , D. J. Kelliher
    • , J. Pasternak
    •  & S. L. Sheehy
  2. University of Huddersfield, Huddersfield, HD1 3DH, UK

    • R. Barlow
    •  & R. Edgecock
  3. Brookhaven National Laboratory, Upton, New York 11973-5000, USA

    • J. S. Berg
    • , F. Méot
    •  & D. Trbojevic
  4. STFC Daresbury Laboratory, Warrington, Cheshire, WA4 4AD, UK

    • N. Bliss
    • , R. K. Buckley
    • , J. A. Clarke
    • , P. Goudket
    • , S. Griffiths
    • , C. Hill
    • , S. F. Hill
    • , F. Jackson
    • , S. P. Jamison
    • , J. K. Jones
    • , L. B. Jones
    • , A. Kalinin
    • , K. Marinov
    • , N. Marks
    • , B. Martlew
    • , P. A. McIntosh
    • , J. W. McKenzie
    • , K. J. Middleman
    • , A. Moss
    • , B. D. Muratori
    • , J. Orrett
    • , M. W. Poole
    • , Y. Saveliev
    • , D. J. Scott
    • , B. J. A. Shepherd
    • , R. Smith
    • , S. L. Smith
    • , T. Weston
    • , A. Wheelhouse
    •  & P. H. Williams
  5. Cockcroft Institute of Accelerator Science and Technology, Daresbury, Warrington, WA4 4AD, UK

    • R. K. Buckley
    • , J. A. Clarke
    • , J. M. Garland
    • , Y. Giboudot
    • , P. Goudket
    • , S. F. Hill
    • , K. M. Hock
    • , D. J. Holder
    • , M. G. Ibison
    • , F. Jackson
    • , S. P. Jamison
    • , J. K. Jones
    • , L. B. Jones
    • , A. Kalinin
    • , I. W. Kirkman
    • , K. Marinov
    • , N. Marks
    • , P. A. McIntosh
    • , J. W. McKenzie
    • , K. J. Middleman
    • , A. Moss
    • , B. D. Muratori
    • , J. Orrett
    • , H. L. Owen
    • , M. W. Poole
    • , Y. Saveliev
    • , D. J. Scott
    • , B. J. A. Shepherd
    • , R. Smith
    • , S. L. Smith
    • , A. Wheelhouse
    • , P. H. Williams
    •  & A. Wolski
  6. TRIUMF, Vancouver, British Columbia V6T 2A3, Canada

    • M. K. Craddock
    • , S. Koscielniak
    •  & Y-N. Rao
  7. University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada

    • M. K. Craddock
  8. University College London, London, WC1E 6BT, UK

    • R. D’Arcy
  9. University of Manchester, Manchester, M13 9PL, UK

    • J. M. Garland
    •  & H. L. Owen
  10. Brunel University, Uxbridge, Middlesex, UB8 3PH, UK

    • Y. Giboudot
  11. Australian Synchrotron, Clayton, Victoria 3168, Australia

    • S. Griffiths
  12. University of Liverpool, Liverpool, L69 7ZE, UK

    • K. M. Hock
    • , D. J. Holder
    • , M. G. Ibison
    • , I. W. Kirkman
    • , N. Marks
    •  & A. Wolski
  13. Fermi National Accelerator Laboratory, Batavia, Illinois 60510-5011, USA

    • C. Johnstone
    •  & D. J. Scott
  14. CERN, Geneva, CH-1211, Switzerland

    • E. Keil
  15. Imperial College London, London, SW7 2AZ, UK

    • J. Pasternak
  16. John Adams Institute for Accelerator Science, University of Oxford, OX1 3RH, UK

    • K. J. Peach
    • , S. L. Sheehy
    •  & T. Yokoi
  17. Lancaster University, Lancaster, LA1 4YW, UK

    • S. Tzenov

Authors

  1. Search for S. Machida in:

  2. Search for R. Barlow in:

  3. Search for J. S. Berg in:

  4. Search for N. Bliss in:

  5. Search for R. K. Buckley in:

  6. Search for J. A. Clarke in:

  7. Search for M. K. Craddock in:

  8. Search for R. D’Arcy in:

  9. Search for R. Edgecock in:

  10. Search for J. M. Garland in:

  11. Search for Y. Giboudot in:

  12. Search for P. Goudket in:

  13. Search for S. Griffiths in:

  14. Search for C. Hill in:

  15. Search for S. F. Hill in:

  16. Search for K. M. Hock in:

  17. Search for D. J. Holder in:

  18. Search for M. G. Ibison in:

  19. Search for F. Jackson in:

  20. Search for S. P. Jamison in:

  21. Search for C. Johnstone in:

  22. Search for J. K. Jones in:

  23. Search for L. B. Jones in:

  24. Search for A. Kalinin in:

  25. Search for E. Keil in:

  26. Search for D. J. Kelliher in:

  27. Search for I. W. Kirkman in:

  28. Search for S. Koscielniak in:

  29. Search for K. Marinov in:

  30. Search for N. Marks in:

  31. Search for B. Martlew in:

  32. Search for P. A. McIntosh in:

  33. Search for J. W. McKenzie in:

  34. Search for F. Méot in:

  35. Search for K. J. Middleman in:

  36. Search for A. Moss in:

  37. Search for B. D. Muratori in:

  38. Search for J. Orrett in:

  39. Search for H. L. Owen in:

  40. Search for J. Pasternak in:

  41. Search for K. J. Peach in:

  42. Search for M. W. Poole in:

  43. Search for Y-N. Rao in:

  44. Search for Y. Saveliev in:

  45. Search for D. J. Scott in:

  46. Search for S. L. Sheehy in:

  47. Search for B. J. A. Shepherd in:

  48. Search for R. Smith in:

  49. Search for S. L. Smith in:

  50. Search for D. Trbojevic in:

  51. Search for S. Tzenov in:

  52. Search for T. Weston in:

  53. Search for A. Wheelhouse in:

  54. Search for P. H. Williams in:

  55. Search for A. Wolski in:

  56. Search for T. Yokoi in:

Contributions

All authors contributed extensively to the work presented in this paper.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to S. Machida.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphys2179

Further reading