Abstract
Networks, also called graphs by mathematicians, provide a useful abstraction of the structure of many complex systems, ranging from social systems and computer networks to biological networks and the state spaces of physical systems. In the past decade there have been significant advances in experiments to determine the topological structure of networked systems, but there remain substantial challenges in extracting scientific understanding from the large quantities of data produced by the experiments. A variety of basic measures and metrics are available that can tell us about small-scale structure in networks, such as correlations, connections and recurrent patterns, but it is considerably more difficult to quantify structure on medium and large scales, to understand the ‘big picture’. Important progress has been made, however, within the past few years, a selection of which is reviewed here.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Input node placement restricting the longest control chain in controllability of complex networks
Scientific Reports Open Access 07 March 2023
-
Cohesion and segregation in the value migration network: Evidence from network partitioning based on sector classification and clustering
Social Network Analysis and Mining Open Access 19 January 2023
-
Dual communities in spatial networks
Nature Communications Open Access 03 December 2022
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout





References
Albert, R. & Barabási, A-L. Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002).
Dorogovtsev, S. N. & Mendes, J. F. F. Evolution of networks. Adv. Phys. 51, 1079–1187 (2002).
Newman, M. E. J. The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003).
Boccaletti, S., Latora, V., Moreno, Y., Chavez, M. & Hwang, D-U. Complex networks: Structure and dynamics. Phys. Rep. 424, 175–308 (2006).
Newman, M. E. J. Networks: An Introduction (Oxford Univ. Press, 2010).
Cohen, R. & Havlin, S. Complex Networks: Structure, Stability and Function (Cambridge Univ. Press, 2010).
Faloutsos, M., Faloutsos, P. & Faloutsos, C. On power-law relationships of the internet topology. Comput. Commun. Rev. 29, 251–262 (1999).
Pastor-Satorras, R. & Vespignani, A. Evolution and Structure of the Internet (Cambridge Univ. Press, 2004).
Pimm, S. L. Food Webs 2nd edn (Univ. Chicago Press, 2002).
Pascual, M. & Dunne, J. A. (eds) Ecological Networks: Linking Structure to Dynamics in Food Webs (Oxford Univ. Press, 2006).
Wasserman, S. & Faust, K. Social Network Analysis (Cambridge Univ. Press, 1994).
Scott, J. Social Network Analysis: A Handbook 2nd edn (Sage, 2000).
Costa, L. da F., Rodrigues, F. A., Travieso, G. & Boas, P. R. V. Characterization of complex networks: A survey of measurements. Adv. Phys. 56, 167–242 (2007).
Girvan, M. & Newman, M. E. J. Community structure in social and biological networks. Proc. Natl Acad. Sci. USA 99, 7821–7826 (2002).
Fortunato, S. Community detection in graphs. Phys. Rep. 486, 75–174 (2010).
Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N. & Barabási, A-L. The large-scale organization of metabolic networks. Nature 407, 651–654 (2000).
Guimerà, R. & Amaral, L. A. N. Functional cartography of complex metabolic networks. Nature 433, 895–900 (2005).
Newman, M. E. J. & Girvan, M. Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113 (2004).
Flake, G. W., Lawrence, S. R., Giles, C. L. & Coetzee, F. M. Self-organization and identification of Web communities. IEEE Comput. 35, 66–71 (2002).
Zhou, H. Distance, dissimilarity index, and network community structure. Phys. Rev. E 67, 061901 (2003).
Radicchi, F., Castellano, C., Cecconi, F., Loreto, V. & Parisi, D. Defining and identifying communities in networks. Proc. Natl Acad. Sci. USA 101, 2658–2663 (2004).
Palla, G., Derényi, I., Farkas, I. & Vicsek, T. Uncovering the overlapping community structure of complex networks in nature and society. Nature 435, 814–818 (2005).
Bagrow, J. P. & Bollt, E. M. Local method for detecting communities. Phys. Rev. E 72, 046108 (2005).
Clauset, A. Finding local community structure in networks. Phys. Rev. E 72, 026132 (2005).
Hastings, M. B. Community detection as an inference problem. Phys. Rev. E 74, 035102 (2006).
Rosvall, M. & Bergstrom, C. T. An information-theoretic framework for resolving community structure in complex networks. Proc. Natl Acad. Sci. USA 104, 7327–7331 (2007).
Blondel, V. D., Guillaume, J-L., Lambiotte, R. & Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. 2008, P10008 (2008).
Agrawal, G. & Kempe, D. Modularity-maximizing network communities via mathematical programming. Eur. Phys. J. B 66, 409–418 (2008).
Hofman, J. M. & Wiggins, C. H. Bayesian approach to network modularity. Phys. Rev. Lett. 100, 258701 (2008).
Leskovec, J., Lang, K., Dasgupta, A. & Mahoney, M. Community structure in large networks: Natural cluster sizes and the absence of large well-defined clusters. Internet Math. 6, 29–123 (2009).
Ahn, Y-Y., Bagrow, J. P. & Lehmann, S. Link communities reveal multiscale complexity in networks. Nature 466, 761–764 (2010).
Lancichinetti, A., Fortunato, S. & Radicchi, F. Benchmark graphs for testing community detection algorithms. Phys. Rev. E 78, 046110 (2008).
Danon, L., Duch, J., Diaz-Guilera, A. & Arenas, A. Comparing community structure identification. J. Stat. Mech. P09008 (2005).
Lancichinetti, A. & Fortunato, S. Community detection algorithms: A comparative analysis. Phys. Rev. E 80, 056117 (2009).
Schaeffer, S. E. Graph clustering. Comput. Sci. Rev. 1, 27–64 (2007).
Pothen, A., Simon, H. & Liou, K-P. Partitioning sparse matrices with eigenvectors of graphs. SIAM J. Matrix Anal. Appl. 11, 430–452 (1990).
Kernighan, B. W. & Lin, S. An efficient heuristic procedure for partitioning graphs. Bell Syst. Tech. J. 49, 291–307 (1970).
Zachary, W. W. An information flow model for conflict and fission in small groups. J. Anthropol. Res. 33, 452–473 (1977).
White, D. R. & Harary, F. The cohesiveness of blocks in social networks: Connectivity and conditional density. Sociol. Methodol. 31, 305–359 (2001).
Duch, J. & Arenas, A. Community detection in complex networks using extremal optimization. Phys. Rev. E 72, 027104 (2005).
Wilkinson, D. M. & Huberman, B. A. A method for finding communities of related genes. Proc. Natl Acad. Sci. USA 101, 5241–5248 (2004).
Wu, F. & Huberman, B. A. Finding communities in linear time: A physics approach. Eur. Phys. J. B 38, 331–338 (2004).
Rosvall, M. & Bergstrom, C. T. Multilevel compression of random walks on networks reveals hierarchical organization in large integrated systems. PLoS One 6, e18209 (2011).
Zhou, H. & Lipowsky, R. Network Brownian Motion: A New Method to Measure Vertex–Vertex Proximity and to Identify Communities and Subcommunities 1062–1069 (Lecture Notes in Computer Science, Vol. 3038, Springer, 2004).
Pons, P. & Latapy, M. Proc. 20th International Symposium on Computer and Information Sciences 284–293 (Lecture Notes in Computer Science, Vol. 3733, Springer, 2005).
Reichardt, J. & Bornholdt, S. Detecting fuzzy community structures in complex networks with a Potts model. Phys. Rev. Lett. 93, 218701 (2004).
Boccaletti, S., Ivanchenko, M., Latora, V., Pluchino, A. & Rapisarda, A. Detection of complex networks modularity by dynamical clustering. Phys. Rev. E 75, 045102 (2007).
Karckhardt, D. & Stern, R. Informal networks and organizational crises: An experimental simulation. Soc. Psychol. Q. 51, 123–140 (1988).
Karrer, B. & Newman, M. E. J. Stochastic blockmodels and community structure in networks. Phys. Rev. E 83, 016107 (2011).
Li, Z., Zhang, S., Wang, R-S., Zhang, X-S. & Chen, L. Quantitative function for community detection. Phys. Rev. E 77, 036109 (2008).
Newman, M. E. J. Mixing patterns in networks. Phys. Rev. E 67, 026126 (2003).
Brandes, U. et al. Proc. 33rd International Workshop on Graph-Theoretic Concepts in Computer Science (Lecture Notes in Computer Science,Vol. 4769, Springer, 2007).
Medus, A., Acuña, G. & Dorso, C. O. Detection of community structures in networks via global optimization. Physica A 358, 593–604 (2005).
Clauset, A., Newman, M. E. J. & Moore, C. Finding community structure in very large networks. Phys. Rev. E 70, 066111 (2004).
Wakita, K. & Tsurumi, T. in Proc. IADIS International Conference, WWW/Internet 2007 (eds Isaı´as, P., Nunes, M. B. & Barroso, J.) 153–162 (IADIS Press, 2007).
Newman, M. E. J. Modularity and community structure in networks. Proc. Natl Acad. Sci. USA 103, 8577–8582 (2006).
Shuzhuo, L., Yinghui, C., Haifeng, D. & Feldman, M. W. A genetic algorithm with local search strategy for improved detection of community structure. Complexity 15, 53–60 (2010).
Fortunato, S. & Barthélémy, M. Resolution limit in community detection. Proc. Natl Acad. Sci. USA 104, 36–41 (2007).
Reichardt, J. & Bornholdt, S. Statistical mechanics of community detection. Phys. Rev. E 74, 016110 (2006).
Arenas, A., Fernandez, A. & Gomez, S. Analysis of the structure of complex networks at different resolution levels. New J. Phys. 10, 053039 (2008).
Breiger, R. L., Boorman, S. A. & Arabie, P. An algorithm for clustering relations data with applications to social network analysis and comparison with multidimensional scaling. J. Math. Psychol. 12, 328–383 (1975).
Holland, P. W., Laskey, K. B. & Leinhardt, S. Stochastic blockmodels: Some first steps. Soc. Networks 5, 109–137 (1983).
Snijders, T. A. B. & Nowicki, K. Estimation and prediction for stochastic blockmodels for graphs with latent block structure. J. Classification 14, 75–100 (1997).
Nowicki, K. & Snijders, T. A. B. Estimation and prediction for stochastic blockstructures. J. Am. Stat. Assoc. 96, 1077–1087 (2001).
Airoldi, E. M., Blei, D. M., Fienberg, S. E. & Xing, E. P. Mixed membership stochastic blockmodels. J. Mach. Learning Res. 9, 1981–2014 (2008).
Goldenberg, A., Zheng, A. X., Feinberg, S. E. & Airoldi, E. M. A survey of statistical network structures. Found. Trends Mach. Learning 2, 1–117 (2009).
Bickel, P. J. & Chen, A. A nonparametric view of network models and Newman–Girvan and other modularities. Proc. Natl Acad. Sci. USA 106, 21068–21073 (2009).
Adamic, L. A. & Glance, N. Proc. WWW-2005 Workshop on the Weblogging Ecosystem (2005).
Guimerà, R. & Sales-Pardo, M. Missing and spurious interactions and the reconstruction of complex networks. Proc. Natl Acad. Sci. USA 106, 22073–22078 (2009).
Yan, X., Zhu, Y., Rouquier, J-B. & Moore, C. in Proc. 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (Association of Computing Machinery, 2011).
Clauset, A., Moore, C. & Newman, M. E. J. Hierarchical structure and the prediction of missing links in networks. Nature 453, 98–101 (2008).
Acknowledgements
Some of the work described here was financially supported by the US National Science Foundation under grants DMS–0405348 and DMS–0804778.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The author declares no competing financial interests.
Rights and permissions
About this article
Cite this article
Newman, M. Communities, modules and large-scale structure in networks. Nature Phys 8, 25–31 (2012). https://doi.org/10.1038/nphys2162
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphys2162
This article is cited by
-
Input node placement restricting the longest control chain in controllability of complex networks
Scientific Reports (2023)
-
GLASS: A Graph Laplacian Autoencoder with Subspace Clustering Regularization for Graph Clustering
Cognitive Computation (2023)
-
Cohesion and segregation in the value migration network: Evidence from network partitioning based on sector classification and clustering
Social Network Analysis and Mining (2023)
-
Mean–variance scaling and stability in commercial sex work networks
Social Network Analysis and Mining (2023)
-
Dual communities in spatial networks
Nature Communications (2022)