Collisionless shocks in laser-produced plasma generate monoenergetic high-energy proton beams

Abstract

Compact and affordable ion accelerators based on laser-produced plasmas have potential applications in many fields of science and medicine. However, the requirement of producing focusable, narrow-energy-spread, energetic beams has proved to be challenging. Here we demonstrate that laser-driven collisionless shocks can accelerate proton beams to 20 MeV with extremely narrow energy spreads of about 1% and low emittances. This is achieved using a linearly polarized train of multiterawatt CO2 laser pulses interacting with a gas-jet target. Computer simulations show that laser-heated electrons launch a collisionless shock that overtakes and reflects the protons in the slowly expanding hydrogen plasma, resulting in a narrow energy spectrum. Simulations predict the production of 200 MeV protons needed for radiotherapy by using current laser technology. These results open a way for developing a compact and versatile, high-repetition-rate ion source for medical and other applications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Experimental setup, the CO2 laser pulse profile and an image of a CR39 detector.
Figure 2: Proton energy spectra.
Figure 3: Laser-produced plasma profile.
Figure 4: Simulation results.
Figure 5: Simulated proton spectra.

References

  1. 1

    Bulanov, S. V., Esirkepov, T. Zh., Khoroshkov, V. S., Kuznetsov, A. V. & Pegoraro, F. Oncological hadrontherapy with laser ion accelerators. Phys. Lett. A 299, 240–247 (2002).

  2. 2

    Linz, U. & Alonso, J. What will it take for laser driven proton accelerators to be applied to tumor therapy? Phys. Rev. STAB 10, 094801 (2007).

  3. 3

    Borghesi, M. et al. Electric field detection in laser–plasma interaction experiments via the proton imaging technique. Phys. Plasmas 9, 2214–2220 (2002).

  4. 4

    Spencer, I. et al. Laser generation of proton beams for the production of short-lived positron emitting isotopes. Nucl. Instrum. Methods B-183, 449–458 (2001).

  5. 5

    Krushelnick, K. et al. Ultrahigh-intensity laser-produced plasmas as a compact heavy ion injection source. IEEE Trans. Plasma Sci. 28, 1110–1115 (2000).

  6. 6

    Roth, M. et al. Fast ignition by intense laser-accelerated proton beams. Phys. Rev. Lett. 86, 436–439 (2001).

  7. 7

    Denavit, J. Absorption of high-intensity subpicosecond lasers on solid density targets. Phys. Rev. Lett. 69, 3052–3055 (1992).

  8. 8

    Zhidkov, A., Uesaka, M., Sasaki, A. & Daido, H. Ion acceleration in a solitary wave by an intense picosecond laser pulse. Phys. Rev. Lett. 89, 215002 (2002).

  9. 9

    Silva, L. O., Marti, M., Davies, J. R. & Fonseca, R. A. Proton shock acceleration in laser–plasma interactions. Phys. Rev. Lett. 92, 015002 (2004).

  10. 10

    Sagdeev, R. Z. & Kennel, C. F. Collisionless shock waves. Sci. Am. 264, 106–113 (1991).

  11. 11

    Adriani, O. et al. PAMELA measurements of cosmic-ray, proton, and helium spectra. (PAMELA collaboration). Science 332, 69–72 (2011).

  12. 12

    Fuchs, J. et al. Laser-driven proton scaling laws and new paths towards energy increase. Nature Phys. 2, 48–54 (2006).

  13. 13

    Robson, L. et al. Scaling of proton acceleration driven by petawatt-laser–plasma interactions. Nature Phys. 3, 58–62 (2007).

  14. 14

    Cowan, T. E. et al. Ultralow emittance, multi-MeV proton beams from a laser virtual-cathode plasma accelerator. Phys. Rev. Lett. 92, 204801 (2004).

  15. 15

    Esirkepov, T., Borghesi, M., Bulanov, S. V., Mourou, G. & Tajima, T. Highly efficient relativistic-ion generation in the laser-piston regime. Phys. Rev. Lett. 92, 175003 (2004).

  16. 16

    Macchi, A., Cattani, F., Liseykina, T. V. & Cornolti, F. Laser acceleration of ion bunches at the front surface of overdense plasmas. Phys. Rev. Lett. 94, 165003 (2005).

  17. 17

    Ledingham, K. W. D. & Galster, W. Laser driven particle and photon beams and some applications. New J. Phys. 12, 045005 (2010).

  18. 18

    Snavely, R. A. et al. Intense high-energy proton beams from petawatt-laser irradiation of solids. Phys. Rev. Lett. 85, 2945–2948 (2000).

  19. 19

    Hegelich, B. M. et al. Laser acceleration of quasi-monoenergetic MeV ion beams. Nature 439, 441–444 (2006).

  20. 20

    Schwoerer, H. et al. Laser–plasma acceleration of quasi-monoenergetic protons from microstructured targets. Nature 439, 445–448 (2006).

  21. 21

    Toncian, T. et al. Ultrafast laser-driven microlens to focus and energy-select mega-electron volt protons. Science 312, 410–413 (2011).

  22. 22

    Schollmeier, M. et al. Controlled transport and focusing of laser-accelerated protons with miniature magnetic devices. Phys. Rev. Lett. 101, 055004 (2008).

  23. 23

    Noda, A. et al. Phase rotation scheme of laser-produced ions for reduction of the energy spread. Laser Phys. 16, 647–653 (2006).

  24. 24

    Henig, A. et al. Radiation-pressure acceleration of ion beams driven by circularly polarized laser pulses. Phys. Rev. Lett. 103, 245003 (2009).

  25. 25

    Palmer, C. A. J. et al. Monoenergetic proton beams accelerated by a radiation pressure driven shock. Phys. Rev. Lett. 106, 014801 (2011).

  26. 26

    Najmudin, Z. et al. Observation of impurity free monoenergetic proton beams from the interaction of a CO2 laser with a gaseous target. Phys. Plasmas 18, 056705 (2011).

  27. 27

    Haberberger, D., Tochitsky, S. & Joshi, C. Fifteen terawatt picosecond CO2 laser system. Opt. Express 18, 17865–17875 (2010).

  28. 28

    Tochitsky, S. Ya. et al. Efficient shortening of self-chirped picosecond pulses in a high-power CO2 amplifier. Opt. Lett. 26, 813–815 (2001).

  29. 29

    Fedosejevs, R., Tomov, I. V., Burnett, N. H., Enright, G. D. & Richardson, M. C. Self-steepening of the density profile of a CO2-laser-produced plasma. Phys. Rev. Lett. 39, 932–935 (1977).

  30. 30

    Young, P. E. et al. Time-dependent channel formation in a laser-produced plasma. Phys. Rev. Lett. 75, 1082–1085 (1995).

  31. 31

    Wilks, S. C. & Kruer, W. L. Absorption of ultrashort, ultra-intense laser light by solids and overdense plasmas. IEEE J. Quantum Electron. 33, 1954–1968 (1997).

  32. 32

    Fonseca, R. A. et al. OSIRIS, a three-dimensional fully relativistic particle in cell code for modeling plasma based accelerators. Lect. Note Comput. Sci. 2331, 342–351 (2002).

  33. 33

    Wilks, S. C. et al. Energetic proton generation in ultra-intense laser–solid interactions. Phys. Plasmas 8, 542–549 (2001).

  34. 34

    Leferve, H. W., Sealock, R. M. & Connolly, R. C. Response of CR-39 to 2-MeV microbeams of H, He, and Ne. Rev. Sci. Instrum. 53, 1221–1227 (1982).

  35. 35

    Semushin, S. & Malka, V. High density gas jet nozzle design for laser target production. Rev. Sci. Instrum. 72, 2961–2965 (2001).

  36. 36

    Alcock, A. J. & Corkum, P. B. Ultra-fast switching of infrared radiation by laser-produced carriers in semiconductors. Can. J. Phys. 57, 1280–1290 (1979).

  37. 37

    Blue, B. E. et al. Plasma-wakefield acceleration of an intense positron beam. Phys. Rev. Lett. 90, 214801 (2003).

  38. 38

    Tsung, F. S. et al. Simulation of monoenergetic electron generation via laser wakefield accelerators for 5–25 TW lasers. Phys. Plasmas 13, 056708 (2006).

  39. 39

    Willingale, L. et al. Collimated multi-MeV ion beams from high-intensity laser interactions with underdense plasma. Phys. Rev. Lett. 96, 245002 (2006).

Download references

Acknowledgements

Work supported by DOE Grant DE-FG02-92-ER40727, NSF grant PHY-0936266 at UCLA, European Research Council ERC-2010-AdG Grant 267841 and FCT (Portugal) grants PTDC/FIS/111720/2009 and SFRH/BD/38952/2007. We thank A. Pak, N. Lemos and K. A. Marsh for characterizing the gas-jet targets. Computing resources provided by PRACE (Tier 0) on Jugene based in Germany, the Hoffman Cluster (UCLA) and the IST Cluster (IST Lisbon).

Author information

D.H., S.T., C.G. and C.J. conceived and designed the experiments, carried out the experiments, analysed the data, contributed analysis tools and wrote the paper. F.F., L.O.S., R.A.F. and W.B.M. carried out the numerical simulations and wrote the paper.

Correspondence to Chan Joshi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 755 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Haberberger, D., Tochitsky, S., Fiuza, F. et al. Collisionless shocks in laser-produced plasma generate monoenergetic high-energy proton beams. Nature Phys 8, 95–99 (2012) doi:10.1038/nphys2130

Download citation

Further reading