Article | Published:

Collisionless shocks in laser-produced plasma generate monoenergetic high-energy proton beams

Nature Physics volume 8, pages 9599 (2012) | Download Citation

Subjects

Abstract

Compact and affordable ion accelerators based on laser-produced plasmas have potential applications in many fields of science and medicine. However, the requirement of producing focusable, narrow-energy-spread, energetic beams has proved to be challenging. Here we demonstrate that laser-driven collisionless shocks can accelerate proton beams to 20 MeV with extremely narrow energy spreads of about 1% and low emittances. This is achieved using a linearly polarized train of multiterawatt CO2 laser pulses interacting with a gas-jet target. Computer simulations show that laser-heated electrons launch a collisionless shock that overtakes and reflects the protons in the slowly expanding hydrogen plasma, resulting in a narrow energy spectrum. Simulations predict the production of 200 MeV protons needed for radiotherapy by using current laser technology. These results open a way for developing a compact and versatile, high-repetition-rate ion source for medical and other applications.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , , , & Oncological hadrontherapy with laser ion accelerators. Phys. Lett. A 299, 240–247 (2002).

  2. 2.

    & What will it take for laser driven proton accelerators to be applied to tumor therapy? Phys. Rev. STAB 10, 094801 (2007).

  3. 3.

    et al. Electric field detection in laser–plasma interaction experiments via the proton imaging technique. Phys. Plasmas 9, 2214–2220 (2002).

  4. 4.

    et al. Laser generation of proton beams for the production of short-lived positron emitting isotopes. Nucl. Instrum. Methods B-183, 449–458 (2001).

  5. 5.

    et al. Ultrahigh-intensity laser-produced plasmas as a compact heavy ion injection source. IEEE Trans. Plasma Sci. 28, 1110–1115 (2000).

  6. 6.

    et al. Fast ignition by intense laser-accelerated proton beams. Phys. Rev. Lett. 86, 436–439 (2001).

  7. 7.

    Absorption of high-intensity subpicosecond lasers on solid density targets. Phys. Rev. Lett. 69, 3052–3055 (1992).

  8. 8.

    , , & Ion acceleration in a solitary wave by an intense picosecond laser pulse. Phys. Rev. Lett. 89, 215002 (2002).

  9. 9.

    , , & Proton shock acceleration in laser–plasma interactions. Phys. Rev. Lett. 92, 015002 (2004).

  10. 10.

    & Collisionless shock waves. Sci. Am. 264, 106–113 (1991).

  11. 11.

    et al. PAMELA measurements of cosmic-ray, proton, and helium spectra. (PAMELA collaboration). Science 332, 69–72 (2011).

  12. 12.

    et al. Laser-driven proton scaling laws and new paths towards energy increase. Nature Phys. 2, 48–54 (2006).

  13. 13.

    et al. Scaling of proton acceleration driven by petawatt-laser–plasma interactions. Nature Phys. 3, 58–62 (2007).

  14. 14.

    et al. Ultralow emittance, multi-MeV proton beams from a laser virtual-cathode plasma accelerator. Phys. Rev. Lett. 92, 204801 (2004).

  15. 15.

    , , , & Highly efficient relativistic-ion generation in the laser-piston regime. Phys. Rev. Lett. 92, 175003 (2004).

  16. 16.

    , , & Laser acceleration of ion bunches at the front surface of overdense plasmas. Phys. Rev. Lett. 94, 165003 (2005).

  17. 17.

    & Laser driven particle and photon beams and some applications. New J. Phys. 12, 045005 (2010).

  18. 18.

    et al. Intense high-energy proton beams from petawatt-laser irradiation of solids. Phys. Rev. Lett. 85, 2945–2948 (2000).

  19. 19.

    et al. Laser acceleration of quasi-monoenergetic MeV ion beams. Nature 439, 441–444 (2006).

  20. 20.

    et al. Laser–plasma acceleration of quasi-monoenergetic protons from microstructured targets. Nature 439, 445–448 (2006).

  21. 21.

    et al. Ultrafast laser-driven microlens to focus and energy-select mega-electron volt protons. Science 312, 410–413 (2011).

  22. 22.

    et al. Controlled transport and focusing of laser-accelerated protons with miniature magnetic devices. Phys. Rev. Lett. 101, 055004 (2008).

  23. 23.

    et al. Phase rotation scheme of laser-produced ions for reduction of the energy spread. Laser Phys. 16, 647–653 (2006).

  24. 24.

    et al. Radiation-pressure acceleration of ion beams driven by circularly polarized laser pulses. Phys. Rev. Lett. 103, 245003 (2009).

  25. 25.

    et al. Monoenergetic proton beams accelerated by a radiation pressure driven shock. Phys. Rev. Lett. 106, 014801 (2011).

  26. 26.

    et al. Observation of impurity free monoenergetic proton beams from the interaction of a CO2 laser with a gaseous target. Phys. Plasmas 18, 056705 (2011).

  27. 27.

    , & Fifteen terawatt picosecond CO2 laser system. Opt. Express 18, 17865–17875 (2010).

  28. 28.

    et al. Efficient shortening of self-chirped picosecond pulses in a high-power CO2 amplifier. Opt. Lett. 26, 813–815 (2001).

  29. 29.

    , , , & Self-steepening of the density profile of a CO2-laser-produced plasma. Phys. Rev. Lett. 39, 932–935 (1977).

  30. 30.

    et al. Time-dependent channel formation in a laser-produced plasma. Phys. Rev. Lett. 75, 1082–1085 (1995).

  31. 31.

    & Absorption of ultrashort, ultra-intense laser light by solids and overdense plasmas. IEEE J. Quantum Electron. 33, 1954–1968 (1997).

  32. 32.

    et al. OSIRIS, a three-dimensional fully relativistic particle in cell code for modeling plasma based accelerators. Lect. Note Comput. Sci. 2331, 342–351 (2002).

  33. 33.

    et al. Energetic proton generation in ultra-intense laser–solid interactions. Phys. Plasmas 8, 542–549 (2001).

  34. 34.

    , & Response of CR-39 to 2-MeV microbeams of H, He, and Ne. Rev. Sci. Instrum. 53, 1221–1227 (1982).

  35. 35.

    & High density gas jet nozzle design for laser target production. Rev. Sci. Instrum. 72, 2961–2965 (2001).

  36. 36.

    & Ultra-fast switching of infrared radiation by laser-produced carriers in semiconductors. Can. J. Phys. 57, 1280–1290 (1979).

  37. 37.

    et al. Plasma-wakefield acceleration of an intense positron beam. Phys. Rev. Lett. 90, 214801 (2003).

  38. 38.

    et al. Simulation of monoenergetic electron generation via laser wakefield accelerators for 5–25 TW lasers. Phys. Plasmas 13, 056708 (2006).

  39. 39.

    et al. Collimated multi-MeV ion beams from high-intensity laser interactions with underdense plasma. Phys. Rev. Lett. 96, 245002 (2006).

Download references

Acknowledgements

Work supported by DOE Grant DE-FG02-92-ER40727, NSF grant PHY-0936266 at UCLA, European Research Council ERC-2010-AdG Grant 267841 and FCT (Portugal) grants PTDC/FIS/111720/2009 and SFRH/BD/38952/2007. We thank A. Pak, N. Lemos and K. A. Marsh for characterizing the gas-jet targets. Computing resources provided by PRACE (Tier 0) on Jugene based in Germany, the Hoffman Cluster (UCLA) and the IST Cluster (IST Lisbon).

Author information

Affiliations

  1. University of California Los Angeles, UCLA Engineering Receiving, 420 Westwood Plaza, Los Angeles, California 90095, USA

    • Dan Haberberger
    • , Sergei Tochitsky
    • , Chao Gong
    • , Warren B. Mori
    •  & Chan Joshi
  2. GoLP/Instituto de Plasmas e Fusao Nuclear—LaboratorioAssociado, Instituto Superior Técnico, 1049—001 Lisbon, Portugal

    • Frederico Fiuza
    • , Ricardo A. Fonseca
    •  & Luis O. Silva
  3. Instituto Universitario de Lisboa (ISCTE-IUL), 1649-026 Lisbon, Portugal

    • Ricardo A. Fonseca

Authors

  1. Search for Dan Haberberger in:

  2. Search for Sergei Tochitsky in:

  3. Search for Frederico Fiuza in:

  4. Search for Chao Gong in:

  5. Search for Ricardo A. Fonseca in:

  6. Search for Luis O. Silva in:

  7. Search for Warren B. Mori in:

  8. Search for Chan Joshi in:

Contributions

D.H., S.T., C.G. and C.J. conceived and designed the experiments, carried out the experiments, analysed the data, contributed analysis tools and wrote the paper. F.F., L.O.S., R.A.F. and W.B.M. carried out the numerical simulations and wrote the paper.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Chan Joshi.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphys2130

Further reading