Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

How light emerges from an illuminated array of subwavelength holes

Abstract

The extraordinary optical transmission through periodic arrays of subwavelength holes has been studied extensively since it was first reported in 1998, owing to both its fundamental implications and its technological potential. The picture of the underlying mechanism that emerges from most of the theoretical studies is a resonant process assisted by surface electromagnetic modes, such as surface plasmons. However, these studies consider an infinite array of holes. By combining experiment and theory, we have analysed the influence of the inherent finite size of the arrays and report here the unexpected spatial distribution of light as it emerges from the arrays. This distribution is strongly anisotropic and extremely sensitive to the angle of incidence of the impinging light. The behaviour can be explained by a model that takes into account the asymmetry induced by the array edges, and the effects this has on the emission pattern across the array.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Resonant transmission through a 31×31 hole array.
Figure 2: Demonstration of the strong sensitivity of emission patterns to the incident angle.
Figure 3: Evolution of the transmission per hole as Nx is increased.
Figure 4: Effects of the array edges on the emissivity from the hole array.

Similar content being viewed by others

References

  1. Ebbesen, T. W., Lezec, H. J., Ghaemi, H. F., Thio, T. & Wolff, P. A. Extraodinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669 (1998).

    Article  ADS  Google Scholar 

  2. Popov, E., Nevière, M., Enoch, S. & Reinisch, R. Theory of light transmission through subwavelength periodic hole arrays. Phys. Rev. B 62, 16100–16108 (2000).

    Article  ADS  Google Scholar 

  3. Martín-Moreno, L. et al. Theory of extraodinary optical transmission through subwavelength hole arrays. Phys. Rev. Lett. 86, 1114–1117 (2001).

    Article  ADS  Google Scholar 

  4. Collin, S., Pardo, F., Teissier, R. & Pelouard, J. L. Strong discontinuities in the complex photonic band structure of transmission metallic gratings. Phys. Rev. B 63, 033107 (2001).

    Article  ADS  Google Scholar 

  5. Müller, R., Malyarchuk, V. & Lienau, C. Three-dimensional theory on light-induced near-field dynamics in a metal film with a periodic array of nanoholes. Phys. Rev. B 68, 205415 (2003).

    Article  ADS  Google Scholar 

  6. Sarrazin, M., Vigneron, J.-P. & Vigoureux, J.-M. Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes. Phys. Rev. B 67, 085415 (2003).

    Article  ADS  Google Scholar 

  7. Genet, C., van Exter, M. P. & Woerdman, J. P. Fano-type interpretation of red shifts and red tails in hole array transmission spectra. Opt. Commun. 225, 331–336 (2003).

    Article  ADS  Google Scholar 

  8. Barnes, W. L., Murray, W. A., Dintinger, J., Devaux, E. & Ebbesen, T. W. Surface plasmon polaritons and their role in the extraordinary transmission of light through periodic arrays of subwavelength holes in a metal film. Phys. Rev. Lett. 92, 107401 (2004).

    Article  ADS  Google Scholar 

  9. Klein Koerkamp, K. J., Enoch, S., Seqerik, F. B., van Hulst, N. F. & Kuipers, L. Strong influence of hole shape in enhanced transmission through periodic arrays of subwavelength holes. Phys. Rev. Lett. 92, 183901 (2004).

    Article  ADS  Google Scholar 

  10. Gordon, R. et al. Strong polarization in the optical transmission through elliptical nanohole arrays. Phys. Rev. Lett. 92, 37401 (2004).

    Article  ADS  Google Scholar 

  11. Degiron, A., Lezec, H. J., Yamamoto, N. & Ebbesen, T. W. Optical transmission properties of a single subwavelength aperture in a real metal. Opt. Commun. 239, 61–66 (2004).

    Article  ADS  Google Scholar 

  12. Schouten, H. F. et al. Plasmon-assisted two-slit transmission: Young’s experiment revisited. Phys. Rev. Lett. 94, 053901 (2005).

    Article  ADS  Google Scholar 

  13. Williams, S. M. et al. Use of the extraordinary infrared transmission of metallic subwavelength arrays to study the catalyzed reaction of methanol to formaldehyde on copper oxide. J. Phys. Chem. B 108, 11833–11837 (2004).

    Article  Google Scholar 

  14. Brolo, A. G., Gordon, R., Leathem, B. & Kavanagh, K. L. Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films. Langmuir 20, 4813–4815 (2004).

    Article  Google Scholar 

  15. Nahata, A., Linke, R. A., Ishi, T. & Ohashi, K. Enhanced nonlinear optical conversion from periodically nanostructured metal film. Opt. Lett. 28, 423–425 (2003).

    Article  ADS  Google Scholar 

  16. Luo, X. & Ishihara, T. Surface plasmon resonant interference nanolithography technique. Appl. Phys. Lett. 84, 4780–4782 (2004).

    Article  ADS  Google Scholar 

  17. Ishi, T., Fujikata, J., Makita, K., Baba, T. & Ohashi, K. Si nanophotodiode with a surface plasmon antenna. Jpn J. Appl. Phys. 44, L364–L366 (2005).

    Article  ADS  Google Scholar 

  18. Shinada, S., Hasijume, J. & Koyama, F. Surface plasmon resonance on microaperture vertical-cavity surface-emitting laser with metal grating. Appl. Phys. Lett. 83, 836–838 (2003).

    Article  ADS  Google Scholar 

  19. Bravo-Abad, J., García-Vidal, F. J. & Martín-Moreno, L. Resonant transmission of light through finite chains of subwavelength holes in a metallic film. Phys. Rev. Lett. 93, 227401 (2004).

    Article  ADS  Google Scholar 

  20. Martín-Moreno, L. & García-Vidal, F. J. Optical transmission through circular hole arrays in optically thick metal films. Opt. Express 12, 3619–3628 (2004).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Financial support by the EC under Project Nos. FP6-NMP4-CT-2003-505699 (Surface Plasmon Photonics) and FP6-2002-IST-1-507879 (Plasmo-Nano-Devices) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. J. García-Vidal.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bravo-Abad, J., Degiron, A., Przybilla, F. et al. How light emerges from an illuminated array of subwavelength holes. Nature Phys 2, 120–123 (2006). https://doi.org/10.1038/nphys213

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys213

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing