Abstract

An intense laser pulse in a plasma can accelerate electrons1,2,3,4 to GeV energies in centimetres5,6,7. Transverse betatron motion8,9 in the plasma wake results in X-ray photons with an energy that depends on the electron energy, oscillation amplitude and frequency of the betatron motion10,11,12. Betatron X-rays from laser-accelerator electrons have hitherto been limited to spectra peaking between 1 and 10 keV (ref. 13). Here we show that the betatron amplitude is resonantly enhanced when electrons interact with the rear of the laser pulse14,15. At high electron energy, resonance occurs when the laser frequency is a harmonic of the betatron frequency, leading to a significant increase in the photon energy. 108 gamma-ray photons, with spectra peaking between 20 and 150 keV, and a peak brilliance >1023 photons s−1 mrad−2 mm−2 per 0.1% bandwidth, are measured for 700 MeV beams, with 107 photons emitted between 1 and 7 MeV. Femtosecond duration gamma-rays may find uses in imaging, isotope production, probing dense matter, homeland security and nuclear physics16.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & Laser electron accelerator. Phys. Rev. Lett. 43, 267–270 (1979).

  2. 2.

    et al. Electron acceleration from the breaking of relativistic plasma waves. Nature 431, 535–538 (2004).

  3. 3.

    et al. High quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431, 538–541 (2004).

  4. 4.

    et al. A laser-plasma accelerator producing monoenergetic electron beams. Nature 431, 541–544 (2004).

  5. 5.

    & Laser wake field acceleration: The highly non-linear broken wave regime. Appl. Phys. B 74, 355–361 (2002).

  6. 6.

    et al. GeV electron beams from a centimetre-scale accelerator. Nature Phys. 2, 696–699 (2006).

  7. 7.

    et al. Self-guided laser wakefield acceleration beyond 1 GeV using ionization-induced injection. Phys. Rev. Lett. 105, 105003 (2010).

  8. 8.

    Electromagnetic-Instability of the ion-focused regime. Phys. Fluids B 4, 730–739 (1992).

  9. 9.

    , & X-ray generation in an ion channel. Phys. Plasmas 10, 4818–4828 (2003).

  10. 10.

    et al. Production of a keV X-ray beam from synchrotron radiation in relativistic laser-plasma interaction. Phys. Rev. Lett. 93, 135005 (2004).

  11. 11.

    et al. X-ray emission from betatron motion in a plasma wiggler. Phys. Rev. Lett. 88, 135004 (2002).

  12. 12.

    et al. Positron production by X rays emitted by betatron motion in a plasma wiggler. Phys. Rev. Lett. 97, 175003 (2006).

  13. 13.

    et al. Bright spatially coherent synchrotron X-rays from a table-top source. Nature Phys. 6, 980–983 (2010).

  14. 14.

    et al. Laser-driven coherent betatron oscillation in a laser-wakefield cavity. Phys. Rev. Lett. 100, 095002 (2008).

  15. 15.

    et al. Laser-wakefield acceleration of monoenergetic electron beams in the first plasma-wave period. Phys. Rev. Lett. 96, 215001 (2006).

  16. 16.

    et al. Radiation sources based on laser-plasma interactions. Phil. Trans. R. Soc. A 364, 689–710 (2006).

  17. 17.

    Diffraction investigation of the atomic-structure of matter. Acta Crystallogr. B 47, 145–154 (1991).

  18. 18.

    , & Nonlinear-interaction of intense laser-pulses in plasmas. Phys. Rev. A 41, 4463–4467 (1990).

  19. 19.

    et al. Low emittance, high brilliance relativistic electron beams from a laser-plasma accelerator. Phys. Rev. Lett. 105, 215007 (2010).

  20. 20.

    et al. High quality electron beams from a laser wakefield accelerator. Plasma Phys. Control. Fusion 52, 124032 (2010).

  21. 21.

    , , & The bubble regime of laser-plasma acceleration: Monoenergetic electrons and the scalability. Plasma Phys. Control. Fusion 46, B179–B186 (2004).

  22. 22.

    , & Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime. Phys. Rev. 10, 061301 (2007).

  23. 23.

    et al. A compact synchrotron radiation source driven by a laser-plasma wakefield accelerator. Nature Phys. 4, 130–133 (2008).

  24. 24.

    Classical Electrodynamics (John Wiley, 1999).

  25. 25.

    , & Particle acceleration in relativistic laser channels. Phys. Plasmas 6, 2847–2854 (1999).

  26. 26.

    et al. Photon kinetic modeling of laser pulse propagation in underdense plasma. Phys. Plasmas 13, 113104 (2006).

  27. 27.

    et al. in Computational Science—ICCS 2002 (eds Peter, M. A., Sloot, A. G., Hoekstra, C. J., Kenneth Tan, J. J. & Dongarra,) 342–351 (Lecture Notes in Computer Science, Vol. 2331, Springer, 2002).

  28. 28.

    et al. Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) paper JThB2 (Optical Society of America, 2008).

  29. 29.

    et al. GeV plasma accelerators driven in waveguides. Plasma Phys. Control. Fusion 49, B403 (2007).

  30. 30.

    et al. Absolute calibration for a broad range single shot electron spectrometer. Rev. Sci. Instrum. 77, 103301 (2006).

  31. 31.

    et al. Absolute response of Fuji imaging plate detectors to picosecond-electron bunches. Rev. Sci. Instrum. 81, 013307 (2010).

  32. 32.

    , , , & Timepix, a 65k programmable pixel readout chip for arrival time, energy and/or photon counting measurements. Nucl. Instrum. Methods A 581, 485–494 (2007).

  33. 33.

    et al. GEANT4-a simulation toolkit. Nucl. Instrum. Methods A 506, 250–303 (2003).

  34. 34.

    , , & Image plate response for conditions relevant to laser-plasma interaction experiments. Meas. Sci. Technol. 19, 095301 (2008).

  35. 35.

    et al. X-ray Data Booklet 3rd edn Pub-490 Rev.3 (Lawrence Berkeley National Laboratory, 2009).

Download references

Acknowledgements

We acknowledge the support of the UK EPSRC, STFC, the Laserlab-Europe consortium and the Extreme Light Infrastructure (ELI) project. Over the past decade many current and previous members of the ALPHA-X consortium have made contributions to the project, for which we extend thanks. We also thank D. Clark and T. McCanny for their technical support, without which the project would not have been possible. The authors would like to thank the OSIRIS consortium (UCLA/IST) for the use of OSIRIS. The work of NRCL was partially supported by FCT Portugal through the grant SFRH/BD/37838/2007

Author information

Affiliations

  1. University of Strathclyde, Department of Physics, Scottish Universities Physics Alliance, John Anderson Building, 107 Rottenrow, Glasgow, G4 0NG, UK

    • Silvia Cipiccia
    • , Mohammad R. Islam
    • , Bernhard Ersfeld
    • , Richard P. Shanks
    • , Enrico Brunetti
    • , Gregory Vieux
    • , Xue Yang
    • , Riju C. Issac
    • , Samuel M. Wiggins
    • , Gregor H. Welsh
    • , Maria-Pia Anania
    •  & Dino A. Jaroszynski
  2. University of Glasgow, Department of Physics and Astronomy, Scottish Universities Physics Alliance, Glasgow, G12 8QQ, UK

    • Dzmitry Maneuski
    • , Rachel Montgomery
    • , Gary Smith
    • , Matthias Hoek
    • , David J. Hamilton
    •  & Val O. Shea
  3. GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Avenida Rovisco Pais 1049-001, Lisbon, Portugal

    • Nuno R. C. Lemos
    •  & João M. Dias
  4. Central Laser Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, OX11 0QX, UK

    • Dan Symes
    •  & Pattathil P. Rajeev

Authors

  1. Search for Silvia Cipiccia in:

  2. Search for Mohammad R. Islam in:

  3. Search for Bernhard Ersfeld in:

  4. Search for Richard P. Shanks in:

  5. Search for Enrico Brunetti in:

  6. Search for Gregory Vieux in:

  7. Search for Xue Yang in:

  8. Search for Riju C. Issac in:

  9. Search for Samuel M. Wiggins in:

  10. Search for Gregor H. Welsh in:

  11. Search for Maria-Pia Anania in:

  12. Search for Dzmitry Maneuski in:

  13. Search for Rachel Montgomery in:

  14. Search for Gary Smith in:

  15. Search for Matthias Hoek in:

  16. Search for David J. Hamilton in:

  17. Search for Nuno R. C. Lemos in:

  18. Search for Dan Symes in:

  19. Search for Pattathil P. Rajeev in:

  20. Search for Val O. Shea in:

  21. Search for João M. Dias in:

  22. Search for Dino A. Jaroszynski in:

Contributions

The experiment was conceived by D.A.J. The experiments and equipment calibration were undertaken by S.C., R.P.S, E.B., G.V., X.Y., R.C.I., S.M.W., G.H.W., M-P.A., D.M., R.M., G.S., M.H., D.J.H., N.R.C.L., V.O.S., J.M.D. and D.A.J. Theoretical analysis, interpretation and simulations were carried out by M.R.I., B.E., S.C. and D.A.J. The laser and target area operators were D.S. and P.P.R. The manuscript was prepared in the main by D.A.J., S.C., B.E. and M.R.I., with the reviewing and comment input of R.C.I., S.M.W., G.H.W., N.R.C.L. and J.M.D.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Dino A. Jaroszynski.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphys2090

Further reading