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Uncovering the hidden regularities and organizational
principles of networks arising in physical systems
ranging from the molecular level to the scale of large

communication infrastructures is the key issue in understanding
their fabric and dynamical properties1–5. The ‘rich-club’
phenomenon refers to the tendency of nodes with high
centrality, the dominant elements of the system, to form
tightly interconnected communities, and it is one of the
crucial properties accounting for the formation of dominant
communities in both computer and social sciences4–8. Here, we
provide the analytical expression and the correct null models that
allow for a quantitative discussion of the rich-club phenomenon.
The presented analysis enables the measurement of the rich-club
ordering and its relation with the function and dynamics of
networks in examples drawn from the biological, social and
technological domains.

The informatics revolution has made it possible for a wide range
of large-scale, rapidly evolving networks, such as transportation,
technological, social and biological networks, to be analysed1–5.
Although these networks are extremely different in their function
and attributes, the analysis of their fabric provides evidence of
several shared regularities, suggesting general and common self-
organizing principles beyond the specific details of the individual
systems. In this context, the statistical physics approach has
been exploited as a very convenient strategy because of its deep
connection with statistical graph theory and because of its power
to quantitatively characterize macroscopic phenomena in terms
of the microscopic dynamics of the various systems1–4,9. As an
initial discriminant of structural ordering, attention has been
focused on the networks’ degree distribution; that is, the probability
P(k) that any given node in the network shares an edge with
k neighbouring nodes. This function is, however, only one of
the many statistics characterizing the structural and hierarchical
ordering of a network; a full account of the connectivity pattern
calls for the detailed study of the multipoint degree correlation
functions and/or an opportune combination of these.

In this letter, we tackle a main structural property of complex
networks, the so-called ‘rich-club’ phenomenon. This property has
been discussed in several instances in both social and computer
sciences and refers to the tendency of high-degree nodes, the hubs

of the network, to be very well-connected to each other. Essentially,
nodes with a large number of links, usually referred to as rich
nodes, are much more likely to form tight and well-interconnected
subgraphs (clubs) than low-degree nodes. A first quantitative
definition of the rich-club phenomenon is given by the rich-club
coefficient φ, introduced in the context of the Internet in ref. 7.
Denoting by E>k the number of edges among the N>k nodes having
degree higher than a given value k, the rich-club coefficient is
expressed as

φ(k) = 2E>k

N>k(N>k −1)
, (1)

where N>k(N>k −1)/2 represents the maximum possible number
of edges among the N>k nodes. Therefore, φ(k) measures the
fraction of edges actually connecting those nodes out of the
maximum number of edges they might possibly share. The
behaviour of the rich-club coefficient as a function of the degree k is
a probe for the topological correlations in a complex network, and
it yields important information about its underlying architecture.
Structural properties, in turn, have immediate consequences on a
network’s features and tasks, such as robustness, performance of
biological functions or selection of traffic backbones, depending on
the system at hand. In a social context, for example, a rich-club
coefficient increasing with the degree k indicates the dominance
of an ‘oligarchy’ of highly connected and mutually communicating
individuals, as opposed to a structure consisting of many loosely
connected and relatively independent subcommunities. In the
Internet, such a feature would point to an architecture in which
important hubs are much more densely interconnected than
peripheral nodes to provide the transit backbone of the network7.
It is also worth stressing that the rich-club phenomenon is not
trivially related to the mixing properties of networks, which enable
the distinction between assortative networks, where high-degree
nodes preferentially attach to high-degree nodes, and disassortative
networks, showing the opposite tendency10–12. Indeed, the rich-club
phenomenon is not necessarily associated with assortative mixing.
In the top panel of Fig. 1, we sketch a simple construction in which
a disassortative network is showing the rich-club phenomenon. In
other words, the rich-club phenomenon and the mixing properties
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Figure 1 Schematic of the rich-club phenomenon and rich-club spectrum φ(k ) for real networks. At the top, a conceptual example of disassortative network showing
the presence of the rich-club phenomenon is shown. Disassortative mixing is given by the tendency of hubs to be, on average, more likely to be connected to low-degree
nodes. However, the four rich nodes represented in the schematic show a clear rich-club behaviour by forming a fully connected clique within the club. At the bottom, results
for the four real-world networks and the three analysed models are shown. The computer generated networks, ER, MR and BA, have size N= 105 and average degree
〈k〉 = 6. ER refers to the Erdös–Rényi graph, MR is constructed from the Molloy–Reed algorithm with a given degree distribution P(k ) ∼ k−3 and the Barabasi–Albert (BA)
model is generated by growing a network with preferential attachment that produces a scale-free graph with power-law degree sequence with exponent γ = 3. Results are
averaged over n= 102 different realizations for each model. All networks share a monotonic increasing behaviour of φ (k ), independent of the nature of the degree
distribution characterizing the network and of the possible presence of underlying structural organization principles. Random networks, either having a poissonian degree
distribution (such as ER) or a heavy-tailed P(k ) (such as MR and BA), also show a rich-club spectrum increasing with increasing values of the degree. This common trend is
indeed due to an intrinsic feature of every network structure, for which hubs have simply a larger probability of being more interconnected than low-degree nodes.

express different features that are not trivially related or derived
from each other (the technical discussion of this point is reported
in the Methods section).

In Fig. 1, we report the behaviour of the rich-club coefficient as
a function of the degree in a variety of real-world networks drawn
from the biological, social and technological world. In Table 1, we
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summarize the basic topological features of these networks and the
datasets used. We also consider three standard network models: the
Erdös–Rényi (ER) graph13, the generalized random network having
a heavy-tailed degree distribution obtained with the Molloy–Reed
(MR) algorithm14 and the Barabasi–Albert (BA) model15. In the ER
graph, N nodes are connected by E edges randomly chosen with
probability p out of the N (N −1)/2 possible pairs of nodes. The
MR network is obtained starting from a given degree sequence P(k)
(in our case P(k) ∼ k−γ with γ = 3) by randomly connecting nodes
with the constraints of avoiding self-loops and multiple edges. The
BA model is generated by using the growing algorithm of ref. 15
that produces a scale-free graph with a power-law degree sequence
with exponent γ = 3. In all cases, the generated networks have
N = 105 vertices and an average degree 〈k〉 = 6.

As is evident from Fig. 1, the monotonic increase of φ(k) is
a feature shared by all of the analysed datasets. This behaviour
is claimed to provide evidence of the rich-club phenomenon as
φ(k) progressively increases in vertices with increasing degree
(see, for example, ref. 7 for the Internet case, where a different
representation of the function is adopted with φ defined in terms of
the rank r of nodes sorted by decreasing degree values). However, a
monotonic increase of φ(k) does not necessarily imply the presence
of the rich-club phenomenon. Indeed, even in the case of the
ER graph, a completely random network, we find an increasing
rich-club coefficient. This implies that the increase of φ(k) is a
natural consequence of the fact that vertices with high degree have
a larger probability of sharing edges than low-degree vertices. This
feature is therefore imposed by construction and does not represent
a signature of any particular organizing principle or structure, as
is clear in the ER case. A simple inspection of the φ(k) trend
is therefore potentially misleading in the discrimination of the
rich-club phenomenon.

To find opportune baselines for the detection of the rich-club
phenomenon, we focus on the theoretical analysis of φ(k). In
the Methods section, we derive an expression for the rich-club
coefficient as a function of the convolution of the two vertices
degree-correlation function P(k, k′). Interestingly, it is possible
to obtain an explicit expression for the rich-club coefficient of
random uncorrelated networks. In this case, the two vertices
degree-correlation function is a simple function of the degree
distribution, yielding the following behaviour for uncorrelated
large-size networks at high degrees:

φunc(k) ∼
k,kmax→∞

k2

〈k〉N
, (2)

where kmax is the maximum degree present in the network.
Equation (2) shows unequivocally that the rich-club coefficient
is also a monotonically increasing function for uncorrelated
networks, so that, to assess the presence of rich-club structural
ordering, it is necessary to compare it with that obtained from
the appropriate null model with the same degree distribution, thus
providing a suitable normalization of φ(k).

From the discussion above, a possible choice for the
normalization of the rich-club coefficient is provided by the ratio
ρunc(k) = φ(k)/φunc(k), where φunc(k) is analytically calculated
by inserting the network’s degree distribution P(k) into equation
(4), as reported in the Methods section. A ratio larger than one is
the actual evidence for the presence of a rich-club phenomenon
leading to an increase in the interconnectivity of high-degree
nodes in a more pronounced way than in the random case.
In contrast, a ratio ρunc(k) < 1 is a signature of an opposite
organizing principle that leads to a lack of interconnectivity among
high-degree nodes. On the other hand, a completely degree–degree
uncorrelated network with finite size is not always realizable owing

Table 1 Basic topological properties of the analysed datasets. We considered four
real-world networks: (a) the protein interaction network12,22 of the yeast
Saccharomyces cerevisiae collected with different experimental techniques and
documented at the database of interacting proteins (http://dip.doe-mbi.ucla.edu/);
(b) the scientific collaboration network23,24 extracted from the electronic database
e-print archive in the area of condensed matter physics
(http://xxx.lanl.gov/archive/cond-mat/), from 1995 to 1998, in which nodes
represent scientists and a connection exists if they coauthored at least one paper
in the archive; (c) the network of worldwide air transportation25,26 representing
the International Air Transport Association (http://www.iata.org/) database of
airport pairs connected by direct flights for the year 2002; (d) the Internet network
at the autonomous system4 level4,10,27,28,29 from data collected by the Oregon
Route Views project (http://www.routeviews.org/) in May 2001, in which nodes
represent Internet service providers and edges connections among those. The
sizes of the networks in number of nodes and edges are shown, along with the
average degree 〈k〉 and the maximum degree value kmax. We also give the value
for the corresponding structural cutoff, ks, in the uncorrelated case16.

Protein Scientific Air Internet
interactions collaborations transportation

Number of nodes 4,713 15,179 3,880 11,174
Number of links 14,846 43,011 18,810 23,409
〈k〉 6.3 5.7 9.7 4.2
kmax 282 97 318 2,389
ks = √〈k〉N 172 294 194 216

to structural constraints. Indeed, any finite-size random network
presents a structural cutoff value ks over which the requirement of
the lack of dangling edges introduces the presence of multiple and
self-connections, and/or degree–degree correlations16,17. Networks
with bounded degree distributions and finite second moment 〈k2〉
present a kmax that is below the structural value ks. In this situation,
φunc(k) is properly defined for all degrees and is representative
of the network topology. However, in networks with heavy-tailed
degree distribution (for example, scale-free degree distributions
with 2 < γ ≤ 3, as observed in many real systems), this is no longer
the case and ks is generally smaller than kmax. In fact, structural
degree–degree correlations and higher-order effects, such as the
emergence of large cliques18, set in even in completely random
networks. The normalization of φ(k) that takes these effects into
account is provided by the expression ρran(k) = φ(k)/φran(k),
where φran(k) is the rich-club coefficient of the maximally random
network with the same degree distribution P(k) of the network
under study2,12. Operatively, the maximally random network can
be thought of as the stationary ensemble of networks visited by
a process that, at any time step, randomly selects a couple of
links of the original network and exchanges two of their ending
points (automatically preserving the degree distribution). Also
in this case, an actual rich-club ordering is denoted by a ratio
ρran(k)> 1. Therefore, whereas ρunc(k) provides information about
the overall rich-club ordering in the network with respect to
an ideally uncorrelated graph, ρran(k) is a normalized measure
that discounts the structural correlations owing to unavoidable
finite-size effects, providing a better discrimination of the actual
presence of the rich-club phenomenon due to the ordering
principles shaping the network.

In Fig. 2, we report the ratios ρran(k) for the real-world and
the simulated networks. The analysis clearly discriminates between
networks with or without rich-club ordering. In particular, we
identify a strong rich-club ordering in the scientific collaboration
network, providing support to the idea that the elite formed
by more influential scientists tends to form collaborative groups
within specific domains. This also supports the view that the
rich-club phenomenon is a natural tendency in many social
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Figure 2 Assessment for the presence of the rich-club phenomenon in the networks under study. φ (k ) is compared with the null hypothesis provided by the maximally
random network with φran (k ). The ratio ρran = φ/φran is plotted as a function of the degree k and compared with the baseline value equal to 1. If ρ (k ) > 1 (<1) the
network shows the presence (absence) of the rich-club phenomenon with respect to the random case. The protein interaction network, the Internet map at the autonomous
system level and the scientific collaboration network show clear behaviours as explained in the main text. The worldwide air transportation network shows a mild rich-club
ordering with ρran (k ) > 1. The ER and MR network models show a ratio ρran (k ) = 1 for all k, as expected, whereas the BA model shows a mixing behaviour with values
above 1 for very high degrees.

networks. We find a clearly opposite result in the decreasing
behaviour of the rich-club spectrum for the protein interaction
network and the Internet map at the autonomous system level. In
both cases, this evidence provides interesting information about the
system structure and function.

The lack of rich-club ordering in the protein interaction
network indicates that proteins with large numbers of interactions
are presiding over different functions and thus, in general, are
coordinating specific functional modules (whose detailed analysis
requires specific tools19). Figure 3 shows portions of the protein
interaction network and the scientific collaboration network
including the club of N>k nodes (N>k = 29 and N>k = 35
for the protein interactions, N>k = 30 and N>k = 36 for the
scientific collaboration) and the connections among them. The
network representations clearly show the presence of a rich-club
phenomenon in the scientific collaboration network, where most of
the rich nodes are highly interconnected forming tight subgraphs,
in contrast to the protein interaction network case, where only
a few links seem to connect rich nodes, the rest linking to
lower-degree vertices.

In the case of the Internet, the appropriate analysis of the
rich-club phenomenon shows that, in contrast to previous claims7,

the structure at the autonomous system level lacks rich-club
ordering. This might seem counter-intuitive. It is reasonable to
imagine that the Internet backbone is made of interconnected
transit providers that are also local hubs. This, however, is not the
case and an explanation can be easily found in the fact that we are
just considering topological properties. Indeed, the backbone hubs
are identified more in terms of their bandwidth and traffic capacity
than in terms of the sole number of connections. The present
result suggests that high-degree hubs provide connectivity to the
local region of the Internet and are not tightly interconnected. The
backbone of interconnected transit providers is instead identified
by high-traffic links, which play a crucial role in terms of traffic
capacities but whose number might represent a small fraction of
the total possible number of interconnections.

This discussion points out that, in some cases, the concept of
rich-club ordering should be generalized to evaluate the richness of
vertices not just in terms of their degree but in terms of the actual
traffic or intensity of interactions handled. In this case, we have to
consider a weighted network representation of the system where
a weight wij representing the traffic or intensity of interaction is
associated with each edge between the vertices i and j. Also in this
case, however, the study of the weighted rich-club coefficient alone
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Protein interaction network
N>k= 29, E>k= 21

Protein interaction network
N>k= 35, E>k= 37

Scientific collaboration network
N>k= 36, E>k= 62

Scientific collaboration network
N>k= 30, E>k= 54

Figure 3 Graph representations of the rich clubs. Progressively smaller clubs of N>k rich nodes in the protein interaction network (top) and in the scientific collaboration
network (bottom) are shown together with the E>k connections among them. Here N>k = 35, E>k = 37 (top left) and N>k = 29, E>k = 21 (top right) for the protein
interaction network; N>k = 36, E>k = 62 (bottom left) and N>k = 30, E>k = 54 (bottom right) for the scientific collaboration network. The two graph representations for
each network show progressively smaller clubs made of N>k rich nodes for increasing values of the degree k. The links connecting the rich nodes to the rest of the network
are not represented for the sake of simplicity. The protein interaction network shows a club whose hubs are relatively independent, being loosely connected among each
other, leaving the remaining links to coordinate specific functional modules. A different picture is observed in the scientific collaboration network case, where most of the
hubs form cliques and tightly interconnected subgraphs, thus revealing the tendency of scientists to form densely interconnected collaborative groups. The graphs have been
produced with the Pajek software (http://vlado.fmf.uni-lj.si/pub/networks/pajek/).

does not discriminate the actual presence of the rich-club effect
(see Methods section). Given the entanglement of the weight and
degree correlations, the appropriate null hypothesis is, however,
more complicated to define and a detailed account of the evaluation
of the weighted rich-club effect will be provided elsewhere.

The analysis presented here provides the baseline functions for
the detection of the rich-club phenomenon and its effect on the
structure of large-scale networks. This allows the measurement of
this effect in a wide range of systems, finally enabling a quantitative
discussion of various claims such as ‘high centrality’ backbones in
technological networks and ‘elitarian’ clubs in social systems.

METHODS

ANALYTICAL EXPRESSION OF THE RICH-CLUB COEFFICIENT

The basic analytical understanding of the rich-club phenomenon starts by
considering the quantity Ekk′ , representing the total number of edges between
vertices of degree k and of degree k′ for k 	= k′, and twice the number of edges
between vertices in the same degree class. We can express the numerator of
φ(k) in equation (1) as 2E>k = ∫ kmax

k dk′∫ kmax
k dk′′Ek′k′′ , where kmax is the

maximum degree present in the network and where, for the sake of simplicity,
the variable k is thought of as continuous. In turn, the quantity Ekk′ can be
expressed as a function of the joint degree probability distribution11,16,20,21 by
means of the identity N〈k〉P(k,k′) = Ekk′ , yielding

φ(k) = N〈k〉∫ kmax
k dk′∫ kmax

k dk′′P(k′,k′′)[
N

∫ kmax
k dk′P(k′)

][
N

∫ kmax
k dk′P(k′)−1

] . (3)

From equation (3), it is clear that φ(k) is also a measure of correlations in the
network, although it represents a different projection of P(k,k′) as compared
with other degree–degree correlation measures. At the same time, it is possible
to see that the rich-club coefficient expresses a property that is not trivially
related to the usual indicators of assortative behaviour, such as the Pearson’s
correlation coefficient11 or the average nearest-neighbour degree10. Note that
these assortativity measures quantify two-point correlations and so account for
quasi-local properties of the nodes in the network, whereas the rich-club
phenomenon is computed as a global feature within a restricted subset. The
double integral is indeed a convolution of the correlation function that allows
the presence of different combinations of the assortative and rich-club features
in the same network.

Only in the case of random uncorrelated networks3,4,21 does the joint
degree distribution P(k,k′) factorize and take the simple form
Punc(k,k′) = kk′P(k)P(k′)/〈k〉2. By inserting this expression into equation
(3), we obtain φ(k) for uncorrelated networks as

φunc(k) = 1

N〈k〉

[∫ kmax
k dk′k′P(k′)∫ kmax

k dk′P(k′)

]2

∼
k,kmax→∞

k2

〈k〉N
, (4)

where we have applied L’Hôpital’s rule to derive the behaviour for large-size
networks and high degrees.
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RICH-CLUB COEFFICIENT FOR WEIGHTED NETWORKS

If the rich-club is defined as the set of nodes having a strength larger than a
given value s, a possible definition of the weighted rich-club coefficient can be
expressed as

φw(s) = 2W>s∑
i|si >s si

,

where W>s represents the sum of the weights on the links connecting two
nodes in the club and the normalization is given by the sum of the strengths of
the rich nodes.

Received 26 September 2005; accepted 13 December 2005; published 15
January 2006.
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