Abstract
The origin of colossal magnetoresistance (CMR) in manganese oxides is among the most challenging problems in condensed-matter physics today. The true nature of the low-temperature electronic phase of these materials is heavily debated. By combining photoemission and tunnelling data, we show that in the archetypal bilayer system La2−2xSr1+2xMn2O7, polaronic degrees of freedom win out across the CMR region of the phase diagram. This means that the generic ground state of bilayer manganites supports a vanishing coherent quasi-particle spectral weight at the Fermi level throughout k-space. The incoherence of the charge carriers, resulting from strong electron–lattice interactions and the accompanying orbital physics, offers a unifying explanation for the anomalous charge-carrier dynamics seen in transport, optics and electron spectroscopies. The stacking number N is the key factor for true metallic behaviour, as an intergrowth-driven breakdown of the polaronic domination to give a metal possessing a traditional Fermi surface is seen in this system.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Jin, S. et al. Thousandfold change in resistivity in magnetoresistive La–Ca–Mn–O films. Science 264, 413–415 (1994).
Şen, C., Alvarez, G. & Dagotto, E. Competing ferromagnetic and charge-ordered states in models for manganites: The origin of the colossal magnetoresistance effect. Phys. Rev. Lett. 98, 127202 (2007).
Goodenough, J. B. Theory of the role of covalence in the perovskite-type manganites [La,M(II)]MnO3 . Phys. Rev. 100, 564–573 (1955).
Kimura, T. & Tokura, Y. Layered magnetic manganites. Annu. Rev. Mater. Sci. 30, 451–474 (2000).
Urushibara, A. et al. Insulator–metal transition and giant magnetoresistance in La1−x Sr x MnO3 . Phys. Rev. B 51, 14103–14109 (1995).
Moritomo, Y., Asamitsu, A., Kuwahara, H. & Tokura, Y. Giant magnetoresistance of manganese oxides with a layered perovskite structure. Nature 380, 141–144 (1996).
Perring, T. G., Aeppli, G., Moritomo, Y. & Tokura, Y. Antiferromagnetic short range order in a two-dimensional manganite exhibiting giant magnetoresistance. Phys. Rev. Lett. 16, 3197–3200 (1997).
Moritomo, Y., Tomioka, Y., Asamitsu, A., Tokura, Y. & Matsui, Y. Magnetic and electronic properties in hole-doped manganese oxides with layered structures: La1−x Sr1+x MnO4 . Phys. Rev. B 51, 3297–3300 (1995).
Vasiliu-Doloc, L. et al. Charge melting and polaron collapse in La1.2Sr1.8Mn2O7 . Phys. Rev. Lett. 83, 4393–4396 (1999).
Campbell, B. J. et al. Structure of nanoscale polaron correlations in La1.2Sr1.8Mn2O7 . Phys. Rev. B 65, 014427 (2001).
Mannella, N. et al. Nodal quasiparticle in pseudogapped colossal magnetoresistive manganites. Nature 438, 474–478 (2005).
Mannella, N. et al. Temperature-dependent evolution of the electronic and local atomic structure in the cubic colossal magnetoresistive manganite La1−x Sr x MnO3 . Phys. Rev. B 76, 233102 (2007).
Sun, Z. et al. Quasiparticlelike peaks, kinks, and electron–phonon coupling at the (π,0) regions in the CMR oxide La2−2x Sr1+2x Mn2O7 . Phys. Rev. Lett. 97, 056401 (2006).
Sun, Z. et al. A local metallic state in globally insulating La1.24Sr1.76Mn2O7 well above the metal–insulator transition. Nature Phys. 3, 248–252 (2007).
de Jong, S. et al. Quasiparticles and anomalous temperature dependence of the low-lying states in the colossal magnetoresistant oxide La2−2x Sr1+2x Mn2O7 (x=0.36) from angle-resolved photoemission. Phys. Rev. B 76, 235117 (2007).
Rønnow, H. M., Renner, Ch., Aeppli, G., Kimura, T. & Tokura, Y. Polarons and confinement of electronic motion to two dimensions in a layered manganite. Nature 440, 1025–1028 (2006).
de Santis, S. et al. Imaging of polarons in ferromagnetic bilayered manganites by scanning tunnelling microscopy. J. Supercond. Nov. Magn. 20, 531–533 (2007).
Weber, F. et al. Signature of checkerboard fluctuations in the phonon spectra of a possible polaronic metal La1.2Sr1.8Mn2O7 . Nature Mater. 8, 798–802 (2009).
Bryant, B., Renner, Ch., Tokunaga, Y., Tokura, Y. & Aeppli, G. Imaging oxygen defects and their motion at a manganite surface. Nature Commun. 2, 212 (2011).
Evtushinsky, D. V. et al. Bridging charge-orbital ordering and Fermi surface instabilities in half-doped single-layered manganite La0.5Sr1.5MnO4 . Phys. Rev. Lett. 105, 147201 (2010).
Allodi, G. et al. Magnetic order in the double-layer manganites (La1−x Pr z )1.2Sr1.8Mn2O7: Intrinsic properties and role of intergrowth. Phys. Rev. B 78, 064420 (2008).
Potter, C. D. et al. Two-dimensional intrinsic and extrinsic ferromagnetic behavior of layered La1.2Sr1.8Mn2O7 single crystals. Phys. Rev. B 57, 72–75 (1998).
Bader, S. D., Osgood, R. M., Miller, D. J., Mitchell, J. F. & Jiang, J. S. Role of intergrowths in the properties of naturally layered manganite single crystals (invited). J. Appl. Phys. 83, 6385–6389 (1998).
Seshadri, R. et al. Study of the layered magnetoresistive perovskite La1.2Sr1.8Mn2O7 by high-resolution electron microscopy and synchrotron x-ray powder diffraction. Chem. Mater. 9, 1778–1787 (1997).
Sloan, J., Battle, P. D., Green, M. A., Rosseinsky, M. J. & Vente, J. F. A HRTEM study of the Ruddlesden–Popper compositions Sr2 LnMn2O7 (Ln=Y, La, Nd, Eu, Ho). J. Solid State Chem. 138, 135–140 (1998).
Chudnovskii, F. A. The minimum conductivity and electron localisation in the metallic phase of transition metal compounds in the vicinity of a metal-insulator transition. J. Phys. C 11, L99–L102 (1978).
Mott, N. F. Metal–Insulator Transitions (Taylor and Francis, 1974).
Ishikawa, T., Tobe, K., Kimura, T., Katsufuji, T. & Tokura, Y. Optical study on the doping and temperature dependence of the anisotropic electronic structure in bilayered manganites, La2−2x Sr1+2x Mn2O7 (0.3≤x≤0.5). Phys. Rev. B 62, 12354–12362 (2000).
Takahashi, K., Kida, N. & Tonouchi, M. Optical evidence of a pseudogap in the ferromagnetic metallic phase of the bilayered manganite. J. Magn. Magn. Mater. 272, E669–E670 (2004).
Okimoto, Y., Katsufuji, T., Ishikawa, T., Arima, T. & Tokura, Y. Variation of electronic structure in La1−x Sr x MnO3 (0≤x≤0.3) as investigated by optical conductivity spectra. Phys. Rev. B 55, 4206–4214 (1997).
Kimura, T. et al. Interplane tunneling magnetoresistance in a layered manganite crystal. Science 274, 1698–1701 (1996).
Li, Q. A. et al. Reentrant orbital order and the true ground state of LaSr2Mn2O7 . Phys. Rev. Lett. 98, 167201 (2007).
Zheng, H., Li, Q., Gray, K. E. & Mitchell, J. F. Charge and orbital ordered phases of La2−2x Sr1+2x Mn2O7−δ . Phys. Rev. B 78, 155103 (2008).
Sun, Z. et al. Electronic structure of the metallic ground state of La2−2x Sr1+2x Mn2O7 for x=0.59 and comparison with x=0.36, 0.38 compounds as revealed by ARPES. Phys. Rev. B 78, 075101 (2008).
Chuang, Y-D., Gromko, A. D., Dessau, D. S., Kimura, T. & Tokura, Y. Fermi surface nesting and nanoscale fluctuating charge/orbital ordering in colossal magnetoresistive oxides. Science 25, 1509–1513 (2001).
Kubota, M., Onoa, K. & Yoshida, T. Electronic structure of layered manganite La1.1Sr1.9Mn2O7 studied by angle-resolved photoemission spectroscopy at low temperatures. J. Electron Spectrosc. Relat. Phenom. 156-158, 398–400 (2007).
Freeland, J. W. et al. Suppressed magnetization at the surfaces and interfaces of ferromagnetic metallic manganites. J. Phys. Condens. Matter 19, 315210 (2007).
Freeland, J. W. et al. Full bulk spin polarization and intrinsic tunnel barriers at the surface of layered manganites. Nature Mater. 4, 62–67 (2005).
Nascimento, V. B. et al. Surface-stabilized nonferromagnetic ordering of a layered ferromagnetic manganite. Phys. Rev. Lett. 103, 227201 (2009).
de Jong, S. et al. High-resolution hard x-ray photoemission investigation of La2−2x Sr1+2x Mn2O7 (0.30<x<0.50): Microscopic phase separation and surface electronic structure of a bilayer colossal magnetoresistance manganite. Phys. Rev. B 80, 205108 (2009).
van den Brink, J., Horsch, P. & Oleś, A. M. Photoemission spectra of LaMnO3 controlled by orbital excitations. Phys. Rev. Lett. 85, 5174–5177 (2000).
Bała, J., Sawatzky, G. A., Oleś, A. M. & Macridin, A. Quantum decoherence in the spectral function of undoped LaMnO3 . Phys. Rev. Lett. 87, 067204 (2001).
Bała, J., Oleś, A. M. & Horsch, P. Quasiparticles and the structure of orbital polarons in ferromagnetic LaMnO3 . Phys. Rev. B 65, 134420 (2002).
Daoud-Aladine, A., Rodríguez-Carvajal, J., Pinsard-Gaudart, L., Fernández-Díaz, M. T. & Revcolevschi, A. Zener polaron ordering in half-doped manganites. Phys. Rev. Lett. 89, 097205 (2002).
Daoud-Aladine, A., Perca, C., Pinsard-Gaudart, L. & Rodríguez-Carvajal, J. Zener polaron ordering variants induced by A-site ordering in half-doped manganites. Phys. Rev. Lett. 101, 166404 (2008).
Wohlfeld, K., Oleś, A. M. & Horsch, P. Orbitally induced string formation in the spin-orbital polarons. Phys. Rev. B 79, 224433 (2009).
May, S. J. et al. Enhanced ordering temperatures in antiferromagnetic manganite superlattices. Nature Mater. 8, 892–897 (2009).
Huang, X. Y., Mryasov, O. N., Novikov, D. L. & Freeman, A. J. Electronic and magnetic properties of layered colossal magnetoresistive oxides: La1+2x Sr2−2x Mn2O7 . Phys. Rev. B 62, 13318–13322 (2000).
Acknowledgements
We thank R. Huisman and M. Gobbi for help with ARPES and STM data acquisition, F. D. Tichelaar and H. Zandbergen for TEM investigations, H. Luigjes, H. Schlatter and J. S. Agema for valuable technical support and the IFW Dresden ARPES group for access to the SES100 end-station. We are grateful to N. Mannella, G. A. Sawatzky, A. J. Millis, P. Littlewood, E. van Heumen and J. Zaanen for useful discussions. This work is part of the research program of the Foundation for Fundamental Research on Matter (FOM), which is part of the Netherlands Organisation for Scientific Research (NWO).
Author information
Authors and Affiliations
Contributions
F.M. and S.d.J. contributed equally to this work. M.S.G., J.B.G., S.d.J. and F.M. designed the experiments. Y.H., D.P. and A.T.B. grew the crystals. F.M., S.d.J., Y.H., W.K.S., I.S., A.M. and M.S.G. carried out the experiments. R.F., A.V., L.P. and M.S. provided photons and assistance during the synchrotron beamtimes. S.d.J and F.M. carried out the data analysis. S.d.J., F.M., J.B.G. and M.S.G. interpreted the results and wrote the paper, with feedback from co-authors.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary Information (PDF 5899 kb)
Rights and permissions
About this article
Cite this article
Massee, F., de Jong, S., Huang, Y. et al. Bilayer manganites reveal polarons in the midst of a metallic breakdown. Nature Phys 7, 978–982 (2011). https://doi.org/10.1038/nphys2089
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphys2089
This article is cited by
-
Unsupervised clustering for identifying spatial inhomogeneity on local electronic structures
npj Quantum Materials (2022)
-
Imaging the formation and surface phase separation of the CE phase
npj Quantum Materials (2021)
-
Local orbital degeneracy lifting as a precursor to an orbital-selective Peierls transition
Nature Communications (2019)
-
Polaron freezing and the quantum liquid-crystal phase in the ferromagnetic metallic La0.67Ca0.33MnO3
npj Quantum Materials (2018)
-
Quantifying the critical thickness of electron hybridization in spintronics materials
Nature Communications (2017)