Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

High-field superconductivity at an electronic topological transition in URhGe


The emergence of superconductivity at high magnetic fields in URhGe is regarded as a paradigm for new state formation approaching a quantum critical point. Until now, a divergence of the quasiparticle mass at the metamagnetic transition was considered essential for superconductivity to survive at magnetic fields above 30 T. Here we report the observation of quantum oscillations in URhGe revealing a tiny pocket of heavy quasiparticles that shrinks continuously with increasing magnetic field, and finally disappears at a topological Fermi surface transition close to or at the metamagnetic field. The quasiparticle mass decreases and remains finite, implying that the Fermi velocity vanishes due to the collapse of the Fermi wavevector. This offers a novel explanation for the re-emergence of superconductivity at extreme magnetic fields and makes URhGe the first proven example of a material where magnetic field-tuning of the Fermi surface, rather than quantum criticality alone, governs quantum phase formation.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic phase diagram of URhGe for magnetic fields applied in the crystallographic b c-plane.
Figure 2: Field-angle dependence of R(B) at T≈100 mK.
Figure 3: Temperature dependence of the quantum oscillations.
Figure 4: Magnetic field dependence of the quantum oscillations.
Figure 5: Magnetic field dependence of the Fermi velocity vF and orbital-limiting field Bc2orb for the Fermi pocket detected in this study.


  1. Saxena, S. S. et al. Superconductivity on the border of itinerant electron ferromagnetism in UGe2 . Nature 406, 587–592 (2000).

    Article  ADS  Google Scholar 

  2. Aoki, D. et al. Coexistence of superconductivity and ferromagnetism in URhGe. Nature 413, 613–616 (2001).

    Article  ADS  Google Scholar 

  3. Huy, N. T. et al. Superconductivity on the border of weak itinerant ferromagnetism in UCoGe. Phys. Rev. Lett. 99, 067006 (2007).

    Article  ADS  Google Scholar 

  4. Fay, D. & Appel, J. Coexistence of p-state superconductivity and itinerant ferromagnetism. Phys. Rev. B 22, 3173–3182 (1980).

    Article  ADS  Google Scholar 

  5. Hardy, F. & Huxley, A. D. p-wave superconductivity in the ferromagnetic superconductor URhGe. Phys. Rev. Lett. 94, 247006 (2005).

    Article  ADS  Google Scholar 

  6. Lévy, F., Sheikin, I., Grenier, B. & Huxley, A. D. Magnetic field-induced superconductivity in the ferromagnet URhGe. Science 309, 1343–1346 (2005).

    Article  ADS  Google Scholar 

  7. Shoenberg, D. Magnetic Oscillations in Metals (Cambridge Univ. Press).

  8. Adams, E. N. & Holstein, T. D. Quantum theory of transverse galvanomagnetic phenomena. J. Phys. Chem. Solids 10, 254–276 (1959).

    Article  ADS  Google Scholar 

  9. Aoki, D. et al. Superconductivity reinforced by magnetic field and the magnetic instability in uranium ferromagnets. J. Phys. Soc. Jpn 80, SA008 (2011).

    Article  Google Scholar 

  10. Lévy, F., Sheikin, I., Grenier, B., Marcenat, C. & Huxley, A. Coexistence and interplay of superconductivity and ferromagnetism in URhGe. J. Phys. Condens. Matter 21, 164211 (2009).

    Article  ADS  Google Scholar 

  11. Aoki, D. et al. First observation of quantum oscillations in the ferromagnetic superconductor UCoGe. J. Phys. Soc. Jpn 80, 013705 (2011).

    Article  ADS  Google Scholar 

  12. Blanter, Y. M., Kaganov, M. I., Pantsulaya, A. V. & Varlamov, A. A. The theory of electronic topological transitions. Phys. Rep. 245, 159–257 (1994).

    Article  ADS  Google Scholar 

  13. Katsnelson, M. I. & Trefilov, A. V. Fermi-liquid theory of electronic topological transitions and screening anomalies in metals. Phys. Rev. B 61, 1643–1645 (2000).

    Article  ADS  Google Scholar 

  14. Hackl, A. & Vojta, M. Zeeman-driven Lifshitz transition: A model for the experimentally observed Fermi-surface reconstruction in YbRh2Si2 . Phys. Rev. Lett. 106, 137002 (2011).

    Article  ADS  Google Scholar 

  15. Julian, S. R., Teunissen, P. A. A. & Wiegers, S. A. J. Fermi surface of UPt3 from 3 to 30 T: Field-induced quasiparticle band polarization and the metamagnetic transition. Phys. Rev. B 46, 9821–9824 (1992).

    Article  ADS  Google Scholar 

  16. van Ruitenbeek, J. M. et al. A de Haas–van Alphen study of the field dependence of the Fermi surface in ZrZn2 . J. Phys. F 12, 2919–2928 (1982).

    Article  ADS  Google Scholar 

  17. Mercure, J-F. et al. Quantum oscillations near the metamagnetic transition in Sr3Ru2O7 . Phys. Rev. B 81, 235103 (2010).

    Article  ADS  Google Scholar 

  18. Rourke, P. M. C. et al. Magnetic-field dependence of the YbRh2Si2 Fermi surface. Phys. Rev. Lett. 101, 237205 (2008).

    Article  ADS  Google Scholar 

  19. Freeman, A. J., Desclaux, J. P., Lander, G. H. & Faber, J. Neutron magnetic form factors of uranium ions. Phys. Rev. B 13, 1168–1176 (1976).

    Article  ADS  Google Scholar 

  20. Lévy, F., Sheikin, I. & Huxley, A. Acute enhancement of the upper critical field for superconductivity approaching a quantum critical point in URhGe. Nature Phys. 3, 460–463 (2007).

    Article  ADS  Google Scholar 

  21. Daou, R., Bergemann, C. & Julian, S. R. Continuous evolution of the Fermi surface of CeRu2Si2 across the metamagnetic transition. Phys. Rev. Lett. 96, 026401 (2006).

    Article  ADS  Google Scholar 

  22. Kusminskiy, S. V., Beach, K. S. D., Neto, A. H. C. & Campbell, D. K. Mean-field study of the heavy fermion metamagnetic transition. Phys. Rev. B 77, 094419 (2008).

    Article  ADS  Google Scholar 

  23. Yamaji, Y., Misawa, T. & Imada, M. Quantum metamagnetic transitions induced by changes in Fermi-surface topology: Applications to a weak itinerant-electron ferromagnet ZrZn2 . J. Phys. Soc. Jpn 76, 063702 (2007).

    Article  ADS  Google Scholar 

Download references


The sample studied was derived from material kindly supplied by the CEA-Grenoble. Research support was provided by the Engineering and Physical Sciences Research Council and the Royal Society.

Author information

Authors and Affiliations



E.A.Y. set up and made the measurements, analysed the data and wrote the manuscript with input from A.D.H. J.M.B. contributed to the data acquisition and analysis. W.W. and K.V.K. designed the 2-axis rotator stage.

Corresponding author

Correspondence to E. A. Yelland.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 263 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yelland, E., Barraclough, J., Wang, W. et al. High-field superconductivity at an electronic topological transition in URhGe. Nature Phys 7, 890–894 (2011).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing