Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Robust optical delay lines with topological protection

Abstract

Phenomena associated with the topological properties of physical systems can be naturally robust against perturbations. This robustness is exemplified by quantized conductance and edge state transport in the quantum Hall and quantum spin Hall effects. Here we show how exploiting topological properties of optical systems can be used to improve photonic devices. We demonstrate how quantum spin Hall Hamiltonians can be created with linear optical elements using a network of coupled resonator optical waveguides (CROW) in two dimensions. We find that key features of quantum Hall systems, including the characteristic Hofstadter butterfly and robust edge state transport, can be obtained in such systems. As a specific application, we show that topological protection can be used to improve the performance of optical delay lines and to overcome some limitations related to disorder in photonic technologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematics of the photonic system with a synthetic magnetic field.
Figure 2: Hofstadter butterfly spectrum.
Figure 3: Edge states and their dispersion.
Figure 4: Edge states versus CROW.
Figure 5: 1D localization versus robust edge states.

Similar content being viewed by others

References

  1. Klitzing, K. V. & Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494–497 (1980).

    Article  ADS  Google Scholar 

  2. Tsui, D. C., Stormer, H. L. & Gossard, A. C. Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48, 1559–1562 (1982).

    Article  ADS  Google Scholar 

  3. König, M. et al. Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007).

    Article  ADS  Google Scholar 

  4. Comtet, A., Jolicoeur, T., Ouvry, S. & David, F. (eds) The Quantum Hall Effect: Novel Excitations and Broken Symmetries (Spinger, 2000).

  5. Prange, R. E., Girvin, S. M. & Cage, M. E. The Quantum Hall Effect (Springer, 1986).

    Google Scholar 

  6. Jeckelmann, B. & Jeanneret, B. The quantum Hall effect as an electrical resistance standard. Rep. Prog. Phys. 64, 1603–1655 (2001).

    Article  ADS  Google Scholar 

  7. Novoselov, K. et al. Room-temperature quantum Hall effect in graphene. Science 315, 1379 (2007).

    Article  ADS  Google Scholar 

  8. Kitaev, A. Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  9. Nayak, C., Simon, S., Stern, A., Freedman, M. & Sarma, S. D. Fault-tolerant quantum computation by anyons. Rev. Mod. Phys. 80, 1083–1159 (2008).

    Article  ADS  Google Scholar 

  10. Cooper, N. Non-Abelian anyons and topological quantum computation. Adv. Phys. 57, 539–616 (2008).

    Article  ADS  Google Scholar 

  11. Haldane, F. & Raghu, S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100, 013904 (2008).

    Article  ADS  Google Scholar 

  12. Cho, J., Angelakis, D. & Bose, S. Fractional quantum Hall state in coupled cavities. Phys. Rev. Lett. 101, 246809 (2008).

    Article  ADS  Google Scholar 

  13. Wang, Z., Chong, Y., Joannopoulos, J. & Soljačić, M. Reflection-free one-way edge modes in a gyromagnetic photonic crystal. Phys. Rev. Lett. 100, 13905 (2008).

    Article  ADS  Google Scholar 

  14. Otterbach, J., Ruseckas, J., Unanyan, R. G., Juzeliūnas, G. & Fleischhauer, M. Effective magnetic fields for stationary light. Phys. Rev. Lett. 104, 033903 (2010).

    Article  ADS  Google Scholar 

  15. Koch, J., Houck, A. A., Hur, K. L. & Girvin, S. M. Time-reversal symmetry breaking in circuit-QED based photon lattices. Phys. Rev. A 82, 043811 (2010).

    Article  ADS  Google Scholar 

  16. Kitagawa, T., Rudner, M., Berg, E. & Demler, E. Exploring topological phases with quantum walks. Phys. Rev. A 82, 033429 (2010).

    Article  ADS  Google Scholar 

  17. Azbel, M. Energy spectrum of a conduction electron in a magnetic field. Sov. Phys. JETP 19, 634–649 (1964).

    Google Scholar 

  18. Kuhl, U. & Stöckmann, H. Microwave realization of the Hofstadter butterfly. Phys. Rev. Lett. 80, 3232–3235 (1998).

    Article  ADS  Google Scholar 

  19. Manela, O., Segev, M., Christodoulides, D. & Kip, D. Hofstadter butterflies in nonlinear Harper lattices, and their optical realizations. New J. Phys. 12, 053017 (2010).

    Article  ADS  Google Scholar 

  20. Haldane, F. Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the ‘parity anomaly’. Phys. Rev. Lett. 61, 2015–2018 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  21. Kane, C. & Mele, E. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005).

    Article  ADS  Google Scholar 

  22. Bernevig, B. & Zhang, S-C. Quantum spin Hall effect. Phys. Rev. Lett. 96, 106802 (2006).

    Article  ADS  Google Scholar 

  23. Xia, F., Sekaric, L. & Vlasov, Y. Ultracompact optical buffers on a silicon chip. Nature Photon. 1, 65–71 (2007).

    Article  ADS  Google Scholar 

  24. Cooper, M. L. et al. Statistics of light transport in 235-ring silicon coupled-resonator optical waveguides. Opt. Express 18, 26505–26516 (2010).

    Article  ADS  Google Scholar 

  25. Yariv, A., Xu, Y., Lee, R. & Scherer, A. Coupled-resonator optical waveguide: A proposal and analysis. Opt. Lett. 24, 711–713 (1999).

    Article  ADS  Google Scholar 

  26. Langbein, D. The tight-binding and the nearly-free-electron approach to lattice electrons in external magnetic fields. Phys. Rev. 180, 633–648 (1969).

    Article  ADS  Google Scholar 

  27. Hofstadter, D. Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields. Phys. Rev. B 14, 2239–2249 (1976).

    Article  ADS  Google Scholar 

  28. Gardiner, C. W. & Collett, M. J. Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation. Phys. Rev. A 31, 3761–3774 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  29. Heebner, J. et al. Enhanced linear and nonlinear optical phase response of AlGaAs microring resonators. Opt. Lett. 29, 769–771 (2004).

    Article  ADS  Google Scholar 

  30. Xia, F., Sekaric, L. & Vlasov, Y. Mode conversion losses in silicon-on-insulator photonic wire based racetrack resonators. Opt. Express 14, 3872–3886 (2006).

    Article  ADS  Google Scholar 

  31. Bychkov, Y. & Rashba, E. Oscillatory effects and the magnetic susceptibility of carriers in inversion layers. J. Phys. C 17, 6039–6045 (1984).

    Article  ADS  Google Scholar 

  32. Fan, S. et al. Theoretical analysis of channel drop tunneling processes. Phys. Rev. B 59, 15882–15892 (1999).

    Article  ADS  Google Scholar 

  33. Xu, Y., Li, Y., Lee, R. & Yariv, A. Scattering-theory analysis of waveguide-resonator coupling. Phys. Rev. E 62, 7389–7404 (2000).

    Article  ADS  Google Scholar 

  34. Halperin, B. Quantized Hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential. Phys. Rev. B 25, 2185–2190 (1982).

    Article  ADS  Google Scholar 

  35. Rammal, R., Toulouse, G., Jaekel, M. & Halperin, B. Quantized Hall conductance and edge states: Two-dimensional strips with a periodic potential. Phys. Rev. B 27, 5142–5145 (1983).

    Article  ADS  Google Scholar 

  36. Hatsugai, Y. Edge states in the integer quantum Hall effect and the Riemann surface of the Bloch function. Phys. Rev. B 48, 11851–11862 (1993).

    Article  ADS  Google Scholar 

  37. Barwicz, T. et al. Fabrication of add-drop filters based on frequency-matched microring resonators. J. Lightwave Technol. 24, 2207–2218 (2006).

    Article  ADS  Google Scholar 

  38. Ferrari, C., Morichetti, F. & Melloni, A. Disorder in coupled-resonator optical waveguides. J. Opt. Soc. Am. B 26, 858–866 (2009).

    Article  ADS  Google Scholar 

  39. Anderson, P. W. Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492–1505 (1958).

    Article  ADS  Google Scholar 

  40. Kramer, B. & Mackinnon, A. Localization: Theory and experiment. Rep. Prog. Phys. 56, 1469–1564 (1993).

    Article  ADS  Google Scholar 

  41. Mookherjea, S., Park, J. S., Yang, S-H. & Bandaru, P. R. Localization in silicon nanophotonic slow-light waveguides. Nature Photon. 2, 90–93 (2008).

    Article  ADS  Google Scholar 

  42. Lahini, Y. et al. Anderson localization and nonlinearity in one-dimensional disordered photonic lattices. Phys. Rev. Lett. 100, 013906 (2008).

    Article  ADS  Google Scholar 

  43. Thouless, D. J., Kohmoto, M., Nightingale, M. P. & den Nijs, M. Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405–408 (1982).

    Article  ADS  Google Scholar 

  44. Schwartz, T., Bartal, G., Fishman, S. & Segev, M. Transport and Anderson localization in disordered two-dimensional photonic lattices. Nature 446, 52–55 (2007).

    Article  ADS  Google Scholar 

  45. Baba, T Slow light in photonic crystals. Nature Photon. 2, 465–473 (2008).

    Article  ADS  Google Scholar 

  46. Huckestein, B. Scaling theory of the integer quantum Hall effect. Rev. Mod. Phys. 67, 357–396 (1995).

    ADS  Google Scholar 

  47. Lahini, Y., Bromberg, Y., Christodoulides, D. & Silberberg, Y. Quantum correlations in two-particle Anderson localization. Phys. Rev. Lett. 105, 163905 (2010).

    Article  ADS  Google Scholar 

  48. Srinivasan, K. & Painter, O. Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system. Nature 450, 862–866 (2007).

    Article  ADS  Google Scholar 

  49. Hafezi, M., Chang, D. E., Gritsev, V., Demler, E. & Lukin, M. D. Photonic quantum transport in a nonlinear optical fiber. Europhys. Lett. 94, 54006 (2011).

    Article  ADS  Google Scholar 

  50. Wang, Z., Chong, Y., Joannopoulos, J. D. & Soljacic, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–776 (2009).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank G. Solomon, E. Waks, S. Fan and B. Halperin for helpful discussions. This research was supported by the US Army Research Office MURI award W911NF0910406, NSF, AFOSR Quantum Simulation MURI, ARO-MURI on Atomtronics, Packard, DARPA QUEST, DARPA OLE and Harvard-MIT CUA.

Author information

Authors and Affiliations

Authors

Contributions

M.H., E.A.D., M.D.L. and J.M.T. contributed to the conceptual development of the project and editing of the manuscript. M.H. carried out the mathematical analysis and simulations and wrote the manuscript.

Corresponding author

Correspondence to Mohammad Hafezi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 431 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hafezi, M., Demler, E., Lukin, M. et al. Robust optical delay lines with topological protection. Nature Phys 7, 907–912 (2011). https://doi.org/10.1038/nphys2063

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2063

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing