Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Interaction and filling-induced quantum phases of dual Mott insulators of bosons and fermions

Abstract

Many-body effects are at the very heart of diverse phenomena found in condensed-matter physics. One striking example is the Mott-insulator phase, where conductivity is suppressed as a result of a strong repulsive interaction. Advances in cold-atom physics have led to the realization of the Mott-insulating phases of atoms in an optical lattice, mimicking the corresponding condensed-matter systems. Here, we explore an exotic strongly-correlated system of interacting dual Mott insulators of bosons and fermions. We find that an interspecies interaction between bosons and fermions drastically modifies each of the Mott insulators, causing effects that include melting, generation of composite particles, an anti-correlated phase and complete phase separation. Comparison between the experimental results and numerical simulations indicate intrinsic adiabatic heating and cooling for the attractively and repulsively interacting dual Mott insulators, respectively.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic illustration of effects of interspecies interaction and filling on dual Mott insulators of bosons and fermions.
Figure 2: Photoassociation and occupancy measurements in an optical lattice.
Figure 3: Occupancy measurements and numerical simulation of occupancy distributions.
Figure 4: Modulation spectroscopy of mixed Mott insulator.
Figure 5: Various types of composite particles in the attractively interacting system.
Figure 6: Thermodynamics of repulsively and attractively interacting dual Mott insulators.

Similar content being viewed by others

References

  1. Imada, M., Fujimori, A. & Tokura, Y. Metal–insulator transitions. Rev. Mod. Phys. 70, 1039–1263 (1998).

    ADS  Google Scholar 

  2. Jaksch, D. & Zoller, P. The cold atom Hubbard toolbox. Ann. Phys. 315, 52–79 (2005).

    Article  ADS  Google Scholar 

  3. Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008).

    Article  ADS  Google Scholar 

  4. Fisher, M. P. A., Weichman, P. B., Grinstein, G. & Fisher, D. S. Boson localization and the superfluid–insulator transition. Phys. Rev. B 40, 546–570 (1989).

    Article  ADS  Google Scholar 

  5. Jaksch, D., Bruder, C., Cirac, J. I., Gardiner, C. W. & Zoller, P. Cold bosonic atoms in optical lattices. Phys. Rev. Lett. 81, 3108–3111 (1998).

    Article  ADS  Google Scholar 

  6. Greiner, M., Mandel, O., Esslinger, T., Hänsch, T. & Bloch, I. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002).

    Article  ADS  Google Scholar 

  7. Spielman, I. B., Phillips, W. D. & Porto, J. V. Mott-insulator transition in a two-dimensional atomic Bose gas. Phys. Rev. Lett. 98, 080404 (2007).

    Article  ADS  Google Scholar 

  8. Jördens, R., Strohmaier, N., Günter, K., Moritz, H. & Esslinger, T. A Mott insulator of fermionic atoms in an optical lattice. Nature 455, 204–207 (2008).

    Article  ADS  Google Scholar 

  9. Schneider, U. et al. Metallic and insulating phases of repulsively interacting fermions in a 3D optical lattice. Science 322, 1520–1525 (2008).

    Article  ADS  Google Scholar 

  10. Campbell, G. K. et al. Imaging the Mott insulator shells by using atomic clock shifts. Science 313, 649–652 (2006).

    Article  ADS  Google Scholar 

  11. Fölling, S., Widera, A., Müller, T., Gerbier, F. & Bloch, I. Formation of spatial shell structure in the superfluid to Mott insulator transition. Phys. Rev. Lett. 97, 060403 (2006).

    Article  ADS  Google Scholar 

  12. Gemelke, N., Zhang, X., Hung, C-L. & Chin, C. In situ observation of incompressible Mott-insulating domains in ultracold atomic gases. Nature 460, 995–998 (2009).

    Article  ADS  Google Scholar 

  13. Bakr, W. S. et al. Probing the superfluid-to-Mott insulator transition at the single-atom level. Science 329, 547–550 (2010).

    Article  ADS  Google Scholar 

  14. Sherson, J. F. et al. Single-atom-resolved fluorescence imaging of an atomic Mott insulator. Nature 467, 68–72 (2010).

    Article  ADS  Google Scholar 

  15. Titvinidze, I., Snoek, M. & Hofstetter, W. Supersolid Bose–Fermi mixtures in optical lattices. Phys. Rev. Lett. 100, 100401 (2008).

    Article  ADS  Google Scholar 

  16. Lewenstein, M., Santos, L., Baranov, M. A. & Fehrmann, H. Atomic Bose–Fermi mixtures in an optical lattice. Phys. Rev. Lett. 92, 050401 (2004).

    Article  ADS  Google Scholar 

  17. Hubener, A., Snoek, M. & Hofstetter, W. Magnetic phases of two-component ultracold bosons in an optical lattice. Phys. Rev. B 80, 245109 (2009).

    Article  ADS  Google Scholar 

  18. Capogrosso-Sansone, B., Söyler, Ş. G., Prokof’ev, N. V. & Svistunov, B. V. Critical entropies for magnetic ordering in bosonic mixtures on a lattice. Phys. Rev. A 81, 053622 (2010).

    Article  ADS  Google Scholar 

  19. Iskin, M. & Sá de Melo, C. A. R. Superfluid and insulating phases of fermion mixtures in optical lattices. Phys. Rev. Lett. 99, 080403 (2007).

    Article  ADS  Google Scholar 

  20. Günter, K., Stöferle, T., Moritz, H., Köhl, M. & Esslinger, T. Bose–Fermi mixtures in a three-dimensional optical lattice. Phys. Rev. Lett. 96, 180402 (2006).

    Article  ADS  Google Scholar 

  21. Ospelkaus, S. et al. Localization of bosonic atoms by fermionic impurities in a three-dimensional optical lattice. Phys. Rev. Lett. 96, 180403 (2006).

    Article  ADS  Google Scholar 

  22. Best, T. et al. Role of interactions in 87Rb–40K Bose–Fermi mixtures in a 3d optical lattice. Phys. Rev. Lett. 102, 030408 (2009).

    Article  ADS  Google Scholar 

  23. Catani, J., De Sarlo, L., Barontini, G., Minardi, F. & Inguscio, M. Degenerate Bose–Bose mixture in a three-dimensional optical lattice. Phys. Rev. A 77, 011603 (2008).

    Article  ADS  Google Scholar 

  24. Weld, D. M. et al. Spin gradient thermometry for ultracold atoms in optical lattices. Phys. Rev. Lett. 103, 245301 (2009).

    Article  ADS  Google Scholar 

  25. Gadway, B., Pertot, D., Reimann, R. & Schneble, D. Superfluidity of interacting bosonic mixtures in optical lattices. Phys. Rev. Lett. 105, 045303 (2010).

    Article  ADS  Google Scholar 

  26. Taglieber, M., Voigt, A-C., Aoki, T., Hänsch, T. W. & Dieckmann, K. Quantum degenerate two-species Fermi–Fermi mixture coexisting with a Bose–Einstein condensate. Phys. Rev. Lett. 100, 010401 (2008).

    Article  ADS  Google Scholar 

  27. Taie, S. et al. Realization of a SU(2)×SU(6) system of fermions in a cold atomic gas. Phys. Rev. Lett. 105, 190401 (2010).

    Article  ADS  Google Scholar 

  28. Kitagawa, M. et al. Two-color photoassociation spectroscopy of ytterbium atoms and the precise determinations of s-wave scattering lengths. Phys. Rev. A 77, 012719 (2008).

    Article  ADS  Google Scholar 

  29. Batrouni, G. G. et al. Mott domains of bosons confined on optical lattices. Phys. Rev. Lett. 89, 117203 (2002).

    Article  ADS  Google Scholar 

  30. Rom, T. et al. State selective production of molecules in optical lattices. Phys. Rev. Lett. 93, 073002 (2004).

    Article  ADS  Google Scholar 

  31. Stöferle, T., Moritz, H., Schori, C., Köhl, M. & Esslinger, T. Transition from a strongly interacting 1d superfluid to a Mott insulator. Phys. Rev. Lett. 92, 130403 (2004).

    Article  ADS  Google Scholar 

  32. Greif, D., Tarruell, L., Uehlinger, T., Jördens, R. & Esslinger, T. Probing nearest-neighbor correlations of ultracold fermions in an optical lattice. Phys. Rev. Lett. 106, 145302 (2011).

    Article  ADS  Google Scholar 

  33. Richardson, R. C. The Pomeranchuk effect. Rev. Mod. Phys. 69, 683–690 (1997).

    Article  ADS  Google Scholar 

  34. Werner, F., Parcollet, O., Georges, A. & Hassan, S. R. Interaction-induced adiabatic cooling and antiferromagnetism of cold fermions in optical lattices. Phys. Rev. Lett. 95, 056401 (2005).

    Article  ADS  Google Scholar 

  35. Cazalilla, M. A., Ho, A. F. & Ueda, M. Ultracold gases of ytterbium: Ferromagnetism and Mott states in an SU(6) fermi system. New J. Phys. 11, 103033 (2009).

    Article  ADS  Google Scholar 

  36. Hazzard, K. R. A., Gurarie, V., Hermele, M. & Rey, A. M. High temperature thermodynamics of fermionic alkaline earth atoms in optical lattices. Preprint at http://arxiv.org/abs/1011.0032 (2005).

  37. Cramer, M. et al. Do mixtures of bosonic and fermionic atoms adiabatically heat up in optical lattices? Phys. Rev. Lett. 100, 140409 (2008).

    Article  ADS  Google Scholar 

  38. Snoek, M., Titvinidze, I., Bloch, I. & Hofstetter, W. Effect of interactions on harmonically confined Bose–Fermi mixtures in optical lattices. Phys. Rev. Lett. 106, 155301 (2011).

    Article  ADS  Google Scholar 

  39. Fukuhara, T., Sugawa, S., Takasu, Y. & Takahashi, Y. All-optical formation of quantum degenerate mixtures. Phys. Rev. A 79, 021601 (2009).

    Article  ADS  Google Scholar 

  40. Fukuhara, T., Sugawa, S., Sugimoto, M., Taie, S. & Takahashi, Y. Mott insulator of ultracold alkaline-earth-metal-like atoms. Phys. Rev. A 79, 041604 (2009).

    Article  ADS  Google Scholar 

  41. Krauth, W., Caffarel, M. & Bouchaud, J-P. Gutzwiller wave function for a model of strongly interacting bosons. Phys. Rev. B 45, 3137–3140 (1992).

    Article  ADS  Google Scholar 

  42. Lühmann, D-S., Bongs, K., Sengstock, K. & Pfannkuche, D. Self-trapping of bosons and fermions in optical lattices. Phys. Rev. Lett. 101, 050402 (2008).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge S. Uetake, T. Fukuhara, S. Sugimoto, Y. Takasu and H. Wayama for their experimental help and J. Doyle for careful reading of the manuscript. This work is supported by the Grant-in-Aid for Scientific Research of JSPS (No. 18204035, 21102005C01 (Quantum Cybernetics)), GCOE Program ‘The Next Generation of Physics, Spun from Universality and Emergence’ from MEXT of Japan, and World- Leading Innovative R&D on Science and Technology (FIRST). S.S and S.T. acknowledge support from JSPS.

Author information

Authors and Affiliations

Authors

Contributions

S.S., S.T. and R.Y. performed the experiment. K.I. and M.Y. performed the theoretical analysis. Y.T. supervised the whole project. All the authors discussed the results and wrote the manuscript.

Corresponding author

Correspondence to Seiji Sugawa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 303 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sugawa, S., Inaba, K., Taie, S. et al. Interaction and filling-induced quantum phases of dual Mott insulators of bosons and fermions. Nature Phys 7, 642–648 (2011). https://doi.org/10.1038/nphys2028

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2028

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing