Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Parahydrogen-enhanced zero-field nuclear magnetic resonance


Nuclear magnetic resonance, conventionally detected in magnetic fields of several tesla, is a powerful analytical tool for the determination of molecular identity, structure and function. With the advent of prepolarization methods and detection schemes using atomic magnetometers or superconducting quantum interference devices, interest in NMR in fields comparable to the Earth’s magnetic field and below (down to zero field) has been revived. Despite the use of superconducting quantum interference devices or atomic magnetometers, low-field NMR typically suffers from low sensitivity compared with conventional high-field NMR. Here we demonstrate direct detection of zero-field NMR signals generated through parahydrogen-induced polarization, enabling high-resolution NMR without the use of any magnets. The sensitivity is sufficient to observe spectra exhibiting 13C–1H scalar nuclear spin–spin couplings (known as J couplings) in compounds with 13C in natural abundance, without the need for signal averaging. The resulting spectra show distinct features that aid chemical fingerprinting.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scheme for detecting parahydrogen-induced polarization at zero magnetic field.
Figure 2: Single-shot zero-field PHIP J-spectra (imaginary component).
Figure 3: Zero-field J spectrum (imaginary component) of ethylbenzene, produced through parahydrogenation of styrene with 13C in natural abundance.
Figure 4: Zero-field PHIP spectra for several compounds.


  1. Ernst, R. R., Bodenhausen, G. & Wokaun, A. Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Oxford Univ. Press, 1987).

    Google Scholar 

  2. Slichter, C. P. Principles of Magnetic Resonance 3rd edn (Springer, 1990).

    Book  Google Scholar 

  3. Appelt, S., Häsing, F. W., Kühn, H., Perlo, J. & Blümich, B. Mobile high resolution xenon nuclear magnetic resonance spectroscopy in the Earth’s magnetic field. Phys. Rev. Lett. 94, 197601 (2005).

    Article  ADS  Google Scholar 

  4. McDermott, R. et al. Liquid-state NMR and scalar couplings in microtesla magnetic fields. Science 295, 2247–2249 (2002).

    Article  ADS  Google Scholar 

  5. Ledbetter, M. P. et al. Optical detection of NMR J-spectra at zero magnetic field. J. Magn. Res. 199, 25–29 (2009).

    Article  ADS  Google Scholar 

  6. Appelt, S., Kühn, H., Häsing, F. W. & Blümich, B. Chemical analysis by ultrahigh-resolution nuclear magnetic resonance in the Earths magnetic field. Nature Phys. 2, 105–109 (2006).

    Article  ADS  Google Scholar 

  7. Budker, D. & Romalis, M. V. Optical magnetometry. Nature Phys. 3, 227–234 (2007).

    Article  ADS  Google Scholar 

  8. Kominis, I. K., Kornack, T. W., Allred, J. C. & Romalis, M. V. A sub-femtoTesla multichannel atomic magnetometer. Nature 422, 596–599 (2003).

    Article  ADS  Google Scholar 

  9. Greenberg, Y. S. Application of superconducting quantum interference devices to nuclear magnetic resonance. Rev. Mod. Phys. 70, 175–222 (1998).

    Article  ADS  Google Scholar 

  10. Ledbetter, M. P. et al. Zero-field remote detection of NMR with a microfabricated atomic magnetometer. Proc. Natl Acad. Sci. USA 105, 2286–2290 (2008).

    Article  ADS  Google Scholar 

  11. Savukov, I. M. & Romalis, M. V. NMR detection with an atomic magnetometer. Phys. Rev. Lett. 94, 123001 (2005).

    Article  ADS  Google Scholar 

  12. Xu, S. J. et al. Magnetic resonance imaging with an optical atomic magnetometer. Proc. Natl Acad. Sci. USA 103, 12668–12671 (2006).

    Article  ADS  Google Scholar 

  13. Savukov, I. M. et al. MRI with an atomic magnetometer suitable for practical imaging applications. J. Magn. Res. 199, 188–191 (2009).

    Article  ADS  Google Scholar 

  14. Bowers, C. R. & Weitekamp, D. P. Transformation of symmetrization order to nuclear-spin magnetization by chemical-reaction and nuclear-magnetic-resonance. Phys. Rev. Lett. 57, 2645–2648 (1986).

    Article  ADS  Google Scholar 

  15. Natterer, J. & Bargon, J. Parahydrogen induced polarization. Prog. Nucl. Magn. Reson. Spectrosc. 31, 293–315 (1997).

    Article  Google Scholar 

  16. Bowers, C. R. in Encylopedia of Nuclear Magnetic Resonance Vol. 9 (eds Grant, D. M. & Harris, R. K.) 750–770 (2002).

    Google Scholar 

  17. Canet, D. et al. Para-hydrogen enrichment and hyperpolarization. Concepts Magn. Reson. Part A 28A, 321–330 (2006).

    Google Scholar 

  18. Adams, R.W. et al. Reversible interactions with para-hydrogen enhance NMR sensitivity by polarization transfer. Science 323, 1708–1711 (2009).

    Article  ADS  Google Scholar 

  19. Atkinson, K. D. et al. Spontaneous transfer of parahydrogen induced spin order to pyridine at low magnetic field. J. Am. Chem. Soc. 131, 13362–13368 (2009).

    Article  Google Scholar 

  20. Chapovsky, P. L. et al. Separation and conversion of nuclear spin isomers of ethylene. Chem. Phys. Lett. 322, 424–428 (2000).

    Article  ADS  Google Scholar 

  21. Sun, Z-D., Takagi, K. & Matsushima, F. Separation and conversion of four nuclear spin isomers of ethylene. Science 310, 1938–1941 (2005).

    Article  ADS  Google Scholar 

  22. Aime, S., Gobetto, R., Reineri, F. & Canet, D. Polarization transfer from parahydrogen to heteronuclei: The effect of H/D substitution. The case of the AA′X and A2A2′X spin systems. J. Magn. Res. 178, 184–192 (2006).

    Article  ADS  Google Scholar 

  23. Carravetta, M., Johannessen, O. G. & Levitt, M. H. Beyond the T1 limit: Singlet nuclear spin states in low magnetic fields. Phys. Rev. Lett. 92, 153001 (2004).

    Article  ADS  Google Scholar 

  24. Pileio, G., Carravetta, M. & Levitt, M. H. Extremely low-frequency spectroscopy in low-field nuclear magnetic resonance. Phys. Rev. Lett. 103, 083002 (2009).

    Article  ADS  Google Scholar 

  25. Zax, D. B., Bielecki, A., Zilm, K. W. & Pines, A. Heteronuclear zero-field NMR. Chem. Phys. Lett. 106, 550–553 (1984).

    Article  ADS  Google Scholar 

  26. Schaefer, T., Chan, W. K., Sebastian, R., Schurko, R. & Hruxka, F. E. Concerning the internal rotational barrier and the experimental and theoretical nJ(13C,13C) and nJ(1H,13C) in ethylbenzene-β13C. Can. J. Chem. 72, 1972–1977 (1994).

    Article  Google Scholar 

  27. Appelt, S. et al. Paths from weak to strong coupling in NMR. Phys. Rev. A 81, 023420 (2010).

    Article  ADS  Google Scholar 

  28. Lee, C. J., Suter, D. & Pines, A. Theory of multiple-pulse NMR at low and zero fields. J. Magn. Res. 75, 110–124 (1987).

    ADS  Google Scholar 

  29. Dang, H. B., Maloof, A. C. & Romalis, M. V. Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer. Appl. Phys. Lett. 97, 151110 (2010).

    Article  ADS  Google Scholar 

  30. Koptyug, I. V. et al. Para-hydrogen induced polarization in heterogeneous hydrogenation reactions. J. Am. Chem. Soc. 129, 5580–5586 (2007).

    Article  Google Scholar 

  31. Osborn, J. A., Jardine, F. H., Young, J. F. & Wilkinson, G. The preparation and properties of tris(triphenylphosphine)halogenorhodium(I) and some reactions thereof including catalytic homogeneous hydrogenation of olefins and acetylenes and their derivatives. J. Chem. Soc. A 1711–1732 (1966).

Download references


Research was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Contract no DE-AC02-05CH11231 (T.T., P.G., G.K. and A.P.), by the National Science Foundation under award noCHE-0957655 (D.B. and M.P.L.) and by the National Institute of Standards and Technology (S.K. and J.K.). We acknowledge discussions with M. Levitt and magnetometer-cell fabrication help from S. Schima.

Author information

Authors and Affiliations



T.T. designed research, carried out experiments and wrote the paper. P.G. contributed to construction of the experiment. G.K. carried out experiments and theoretical analysis. S.K. and J.K. provided the microfabricated vapour cell. M.P.L. built the experiment, designed research, carried out experiments, simulations and theoretical analysis and wrote the paper. D.B. designed research and wrote the paper. A.P. designed research and wrote the paper.

Corresponding author

Correspondence to A. Pines.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 323 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Theis, T., Ganssle, P., Kervern, G. et al. Parahydrogen-enhanced zero-field nuclear magnetic resonance. Nature Phys 7, 571–575 (2011).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing