Abstract
Quantized vortices appear in quantum gases at the breakdown of superfluidity. In liquid helium and cold atomic gases, they have been indentified as the quantum counterpart of turbulence in classical fluids. In the solid state, composite light–matter bosons known as exciton polaritons have enabled studies of non-equilibrium quantum gases and superfluidity. However, there has been no experimental evidence of hydrodynamic nucleation of polariton vortices so far. Here we report the experimental study of a polariton fluid flowing past an obstacle and the observation of nucleation of quantized vortex pairs in the wake of the obstacle. We image the nucleation mechanism and track the motion of the vortices along the flow. The nucleation conditions are established in terms of local fluid density and velocity measured on the obstacle perimeter. The experimental results are successfully reproduced by numerical simulations based on the resolution of the Gross–Pitaevskii equation.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Room-temperature polariton quantum fluids in halide perovskites
Nature Communications Open Access 30 November 2022
-
Geometric frustration in polygons of polariton condensates creating vortices of varying topological charge
Nature Communications Open Access 09 April 2021
-
Vortices as fractons
Communications Physics Open Access 08 March 2021
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout





References
Bergé, P., Pomeau, Y. & Vidal, C. Order Within Chaos: Towards a Deterministic Approach to Turbulence (Wiley, 1986).
Frisch, T. et al. Transition to dissipation in a model superflow. Phys. Rev. Lett. 69, 1644–1647 (1992).
Winiecki, T., McCann, J. F. & Adams, C. S. Pressure drag in linear and nonlinear quantum fluids. Phys. Rev. Lett. 82, 5186–5189 (1999).
Winiecki, T. et al. Vortex shedding and drag in dilute Bose–Einstein condensates. J. Phys. B 33, 4069–4078 (2000).
Barenghi, C. F., Donnelly, R. J. & Vinen, W. F. (eds) Quantized Vortex Dynamics and Superfluid Turbulence (Springer, 2001).
Aftalion, A. et al. Dissipative flow and vortex shedding in the Painlevé boundary layer of a Bose–Einstein condensate. Phys. Rev. Lett. 91, 090407 (2003).
Sasaki, K. et al. Bénard–von Kármán vortex street in a Bose–Einstein condensate. Phys. Rev. Lett. 104, 150404 (2010).
Mironov, V. A. et al. Structure of vortex shedding past potential barriers moving in a Bose–Einstein Condensate. J. Exp. Theor. Phys. 110, 877–889 (2010).
Raman, C. et al. Evidence for a critical velocity in a Bose–Einstein condensed gas. Phys. Rev. Lett. 83, 2502–2505 (1999).
Onofrio, R. et al. Observation of superfluid flow in a Bose–Einstein condensed gas. Phys. Rev. Lett. 85, 2228–2231 (2000).
Madison, K. W., Chevy, F., Wohlleben, W. & Dalibard, J. Vortex formation in a stirred Bose–Einstein condensate. Phys. Rev. Lett. 84, 806–809 (2000).
Madison, K. W., Chevy, F., Bretin, V. & Dalibard, J. Stationary states of a rotating Bose–Einstein condensate: Routes to vortex nucleation. Phys. Rev. Lett. 86, 4443–4446 (2001).
Raman, C., Abo-Shaeer, J. R., Vogels, J. M., Xu, K. & Ketterle, W. Vortex nucleation in a stirred Bose–Einstein condensate. Phys. Rev. Lett. 87, 210402 (2001).
Yarmchuk, E. J., Gordon, M. J. V. & Packard, R. E. Observation of stationary vortex arrays in rotating superfluid helium. Phys. Rev. Lett. 43, 214–217 (1979).
Henn, E. A. L., Seman, J. A., Roati, G., Magalhes, K. M. F. & Bagnato, V. S. Emergence of turbulence in an oscillating Bose–Einstein condensate. Phys. Rev. Lett. 103, 045301 (2009).
Inouye, S. et al. Observation of vortex phase singularities in Bose–Einstein condensates. Phys. Rev. Lett. 87, 080402 (2001).
Neely, T. W. et al. Observation of vortex dipoles in an oblate Bose–Einstein condensate. Phys. Rev. Lett. 104, 160401 (2010).
Amo, A. et al. Superfluidity of polaritons in semiconductor microcavities. Nature Phys. 5, 805–810 (2009).
Weisbuch, C. et al. Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett. 69, 3314–3317 (1992).
Cerna, R. et al. Coherent optical control of the wave function of zero-dimensional exciton polaritons. Phys. Rev. B 80, 121309(R) (2009).
Nardin, G. et al. Selective photoexcitation of confined exciton-polariton vortices. Phys. Rev. B 82, 073303 (2010).
Saba, M. et al. High-temperature ultrafast polariton parametric amplification in semiconductor microcavities. Nature 414, 731–735 (2001).
Kasprzak, J. et al. Bose–Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006).
Carusotto, I. et al. Fermionized photons in an array of driven dissipative nonlinear cavities. Phys. Rev. Lett. 103, 033601 (2010).
Love, A. P. D. et al. Intrinsic decoherence mechanisms in the microcavity polariton condensate. Phys. Rev. Lett. 101, 067404 (2008).
Lagoudakis, K. G. Coherent oscillations in an exciton-polariton Josephson junction. Phys. Rev. Lett. 105, 120403 (2010).
Wertz, E. et al. Spontaneous formation and optical manipulation of extended polariton condensates. Nature Phys. 6, 860–864 (2010).
Lagoudakis, K. G. et al. Quantized vortices in an exciton-polariton condensate. Nature Phys. 4, 706–710 (2008).
Lagoudakis, K. G. et al. Observation of half-quantum vortices in an exciton-polariton condensate. Science 326, 974–976 (2009).
Roumpos, G. et al. Single vortex–antivortex pair in an exciton-polariton condensate. Nature Phys. 7, 129–133 (2011).
Krizhanovskii, D. N. et al. Effect of interactions on vortices in a nonequilibrium polariton condensate. Phys. Rev. Lett. 104, 126402 (2010).
Sanvitto, D. et al. Persistent currents and quantized vortices in a polariton superfluid. Nature Phys. 6, 527–533 (2010).
Amo, A. et al. Collective fluid dynamics of a polariton condensate in a semiconductor microcavity. Nature 457, 291–295 (2009).
Carusotto, I. et al. Probing microcavity polariton superfluidity through resonant Rayleigh scattering. Phys. Rev. Lett. 93, 166401 (2010).
Bolda, E. L. et al. Dissipative optical flow in a nonlinear Fabry–Perot cavity. Phys. Rev. Lett. 86, 416–419 (2001).
Pigeon, S. et al. Hydrodynamic nucleation of vortices and solitons in a resonantly excited polariton superfluid. Preprint at http://arxiv.org/abs/1006.4755 (2010).
Christmann, G. et al. Room temperature polariton lasing in a GaN/AlGaN multiple quantum well microcavity. Appl. Phys. Lett. 93, 051102 (2008).
Kaitouni, R. I. et al. Engineering the spatial confinement of exciton polaritons in semiconductors. Phys. Rev. B 74, 155311 (2006).
Amo, A. et al. Light engineering of the polariton landscape in semiconductor microcavities. Phys. Rev. B 82, 081301(R) (2010).
Nardin, G. et al. Phase-resolved imaging of confined exciton-polariton wave functions in elliptical traps. Phys. Rev. B 82, 045304 (2010).
Kreis, T. Holographic Interferometry—Principles and Methods (Akademie, 1996).
Acknowledgements
We would like to thank M. Wouters and T. C. H Liew for enlightening discussions. We acknowledge support by the Swiss National Science Foundation through the ‘NCCR Quantum Photonics’.
Author information
Authors and Affiliations
Contributions
G.N. and G.G performed the experiments. Y.L. performed the numerical simulations. F.M-G. grew the sample. G.N, Y.L and B.P. wrote the paper. B.D-P. supervised the project. All authors contributed to numerous discussions and data analysis.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary Information (PDF 1566 kb)
Supplementary Movie
Supplementary Movie 1 (MOV 1456 kb)
Supplementary Movie
Supplementary Movie 2 (MOV 2085 kb)
Supplementary Movie
Supplementary Movie 3 (MOV 1188 kb)
Supplementary Movie
Supplementary Movie 4 (MOV 1586 kb)
Supplementary Movie
Supplementary Movie 5 (MOV 1002 kb)
Supplementary Movie
Supplementary Movie 6 (MOV 2151 kb)
Supplementary Movie
Supplementary Movie 7 (MOV 657 kb)
Supplementary Movie
Supplementary Movie 8 (MOV 1834 kb)
Supplementary Movie
Supplementary Movie 9 (MOV 825 kb)
Supplementary Movie
Supplementary Movie 10 (MOV 1846 kb)
Supplementary Movie
Supplementary Movie 11 (MOV 687 kb)
Supplementary Movie
Supplementary Movie 12 (MOV 1589 kb)
Rights and permissions
About this article
Cite this article
Nardin, G., Grosso, G., Léger, Y. et al. Hydrodynamic nucleation of quantized vortex pairs in a polariton quantum fluid. Nature Phys 7, 635–641 (2011). https://doi.org/10.1038/nphys1959
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphys1959
This article is cited by
-
Onset of vortex clustering and inverse energy cascade in dissipative quantum fluids
Nature Photonics (2023)
-
Room-temperature polariton quantum fluids in halide perovskites
Nature Communications (2022)
-
Vortices as fractons
Communications Physics (2021)
-
Geometric frustration in polygons of polariton condensates creating vortices of varying topological charge
Nature Communications (2021)
-
Real-time multispeckle spectral-temporal measurement unveils the complexity of spatiotemporal solitons
Nature Communications (2021)