Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hydrodynamic nucleation of quantized vortex pairs in a polariton quantum fluid

Abstract

Quantized vortices appear in quantum gases at the breakdown of superfluidity. In liquid helium and cold atomic gases, they have been indentified as the quantum counterpart of turbulence in classical fluids. In the solid state, composite light–matter bosons known as exciton polaritons have enabled studies of non-equilibrium quantum gases and superfluidity. However, there has been no experimental evidence of hydrodynamic nucleation of polariton vortices so far. Here we report the experimental study of a polariton fluid flowing past an obstacle and the observation of nucleation of quantized vortex pairs in the wake of the obstacle. We image the nucleation mechanism and track the motion of the vortices along the flow. The nucleation conditions are established in terms of local fluid density and velocity measured on the obstacle perimeter. The experimental results are successfully reproduced by numerical simulations based on the resolution of the Gross–Pitaevskii equation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental scheme.
Figure 2: Population dynamics.
Figure 3: Vortex dynamics.
Figure 4: Nucleation conditions in experiments.
Figure 5: Nucleation criterion: numerical evidence.

Similar content being viewed by others

References

  1. Bergé, P., Pomeau, Y. & Vidal, C. Order Within Chaos: Towards a Deterministic Approach to Turbulence (Wiley, 1986).

    MATH  Google Scholar 

  2. Frisch, T. et al. Transition to dissipation in a model superflow. Phys. Rev. Lett. 69, 1644–1647 (1992).

    Article  ADS  Google Scholar 

  3. Winiecki, T., McCann, J. F. & Adams, C. S. Pressure drag in linear and nonlinear quantum fluids. Phys. Rev. Lett. 82, 5186–5189 (1999).

    Article  ADS  Google Scholar 

  4. Winiecki, T. et al. Vortex shedding and drag in dilute Bose–Einstein condensates. J. Phys. B 33, 4069–4078 (2000).

    Article  ADS  Google Scholar 

  5. Barenghi, C. F., Donnelly, R. J. & Vinen, W. F. (eds) Quantized Vortex Dynamics and Superfluid Turbulence (Springer, 2001).

  6. Aftalion, A. et al. Dissipative flow and vortex shedding in the Painlevé boundary layer of a Bose–Einstein condensate. Phys. Rev. Lett. 91, 090407 (2003).

    Article  ADS  Google Scholar 

  7. Sasaki, K. et al. Bénard–von Kármán vortex street in a Bose–Einstein condensate. Phys. Rev. Lett. 104, 150404 (2010).

    Article  ADS  Google Scholar 

  8. Mironov, V. A. et al. Structure of vortex shedding past potential barriers moving in a Bose–Einstein Condensate. J. Exp. Theor. Phys. 110, 877–889 (2010).

    Article  ADS  Google Scholar 

  9. Raman, C. et al. Evidence for a critical velocity in a Bose–Einstein condensed gas. Phys. Rev. Lett. 83, 2502–2505 (1999).

    Article  ADS  Google Scholar 

  10. Onofrio, R. et al. Observation of superfluid flow in a Bose–Einstein condensed gas. Phys. Rev. Lett. 85, 2228–2231 (2000).

    Article  ADS  Google Scholar 

  11. Madison, K. W., Chevy, F., Wohlleben, W. & Dalibard, J. Vortex formation in a stirred Bose–Einstein condensate. Phys. Rev. Lett. 84, 806–809 (2000).

    Article  ADS  Google Scholar 

  12. Madison, K. W., Chevy, F., Bretin, V. & Dalibard, J. Stationary states of a rotating Bose–Einstein condensate: Routes to vortex nucleation. Phys. Rev. Lett. 86, 4443–4446 (2001).

    Article  ADS  Google Scholar 

  13. Raman, C., Abo-Shaeer, J. R., Vogels, J. M., Xu, K. & Ketterle, W. Vortex nucleation in a stirred Bose–Einstein condensate. Phys. Rev. Lett. 87, 210402 (2001).

    Article  ADS  Google Scholar 

  14. Yarmchuk, E. J., Gordon, M. J. V. & Packard, R. E. Observation of stationary vortex arrays in rotating superfluid helium. Phys. Rev. Lett. 43, 214–217 (1979).

    Article  ADS  Google Scholar 

  15. Henn, E. A. L., Seman, J. A., Roati, G., Magalhes, K. M. F. & Bagnato, V. S. Emergence of turbulence in an oscillating Bose–Einstein condensate. Phys. Rev. Lett. 103, 045301 (2009).

    Article  ADS  Google Scholar 

  16. Inouye, S. et al. Observation of vortex phase singularities in Bose–Einstein condensates. Phys. Rev. Lett. 87, 080402 (2001).

    Article  ADS  Google Scholar 

  17. Neely, T. W. et al. Observation of vortex dipoles in an oblate Bose–Einstein condensate. Phys. Rev. Lett. 104, 160401 (2010).

    Article  ADS  Google Scholar 

  18. Amo, A. et al. Superfluidity of polaritons in semiconductor microcavities. Nature Phys. 5, 805–810 (2009).

    Article  ADS  Google Scholar 

  19. Weisbuch, C. et al. Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett. 69, 3314–3317 (1992).

    Article  ADS  Google Scholar 

  20. Cerna, R. et al. Coherent optical control of the wave function of zero-dimensional exciton polaritons. Phys. Rev. B 80, 121309(R) (2009).

    Article  ADS  Google Scholar 

  21. Nardin, G. et al. Selective photoexcitation of confined exciton-polariton vortices. Phys. Rev. B 82, 073303 (2010).

    Article  ADS  Google Scholar 

  22. Saba, M. et al. High-temperature ultrafast polariton parametric amplification in semiconductor microcavities. Nature 414, 731–735 (2001).

    Article  ADS  Google Scholar 

  23. Kasprzak, J. et al. Bose–Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006).

    Article  ADS  Google Scholar 

  24. Carusotto, I. et al. Fermionized photons in an array of driven dissipative nonlinear cavities. Phys. Rev. Lett. 103, 033601 (2010).

    Article  ADS  Google Scholar 

  25. Love, A. P. D. et al. Intrinsic decoherence mechanisms in the microcavity polariton condensate. Phys. Rev. Lett. 101, 067404 (2008).

    Article  ADS  Google Scholar 

  26. Lagoudakis, K. G. Coherent oscillations in an exciton-polariton Josephson junction. Phys. Rev. Lett. 105, 120403 (2010).

    Article  ADS  Google Scholar 

  27. Wertz, E. et al. Spontaneous formation and optical manipulation of extended polariton condensates. Nature Phys. 6, 860–864 (2010).

    Article  ADS  Google Scholar 

  28. Lagoudakis, K. G. et al. Quantized vortices in an exciton-polariton condensate. Nature Phys. 4, 706–710 (2008).

    Article  ADS  Google Scholar 

  29. Lagoudakis, K. G. et al. Observation of half-quantum vortices in an exciton-polariton condensate. Science 326, 974–976 (2009).

    Article  ADS  Google Scholar 

  30. Roumpos, G. et al. Single vortex–antivortex pair in an exciton-polariton condensate. Nature Phys. 7, 129–133 (2011).

    Article  ADS  Google Scholar 

  31. Krizhanovskii, D. N. et al. Effect of interactions on vortices in a nonequilibrium polariton condensate. Phys. Rev. Lett. 104, 126402 (2010).

    Article  ADS  Google Scholar 

  32. Sanvitto, D. et al. Persistent currents and quantized vortices in a polariton superfluid. Nature Phys. 6, 527–533 (2010).

    Article  ADS  Google Scholar 

  33. Amo, A. et al. Collective fluid dynamics of a polariton condensate in a semiconductor microcavity. Nature 457, 291–295 (2009).

    Article  ADS  Google Scholar 

  34. Carusotto, I. et al. Probing microcavity polariton superfluidity through resonant Rayleigh scattering. Phys. Rev. Lett. 93, 166401 (2010).

    Article  ADS  Google Scholar 

  35. Bolda, E. L. et al. Dissipative optical flow in a nonlinear Fabry–Perot cavity. Phys. Rev. Lett. 86, 416–419 (2001).

    Article  ADS  Google Scholar 

  36. Pigeon, S. et al. Hydrodynamic nucleation of vortices and solitons in a resonantly excited polariton superfluid. Preprint at http://arxiv.org/abs/1006.4755 (2010).

  37. Christmann, G. et al. Room temperature polariton lasing in a GaN/AlGaN multiple quantum well microcavity. Appl. Phys. Lett. 93, 051102 (2008).

    Article  ADS  Google Scholar 

  38. Kaitouni, R. I. et al. Engineering the spatial confinement of exciton polaritons in semiconductors. Phys. Rev. B 74, 155311 (2006).

    Article  ADS  Google Scholar 

  39. Amo, A. et al. Light engineering of the polariton landscape in semiconductor microcavities. Phys. Rev. B 82, 081301(R) (2010).

    Article  ADS  Google Scholar 

  40. Nardin, G. et al. Phase-resolved imaging of confined exciton-polariton wave functions in elliptical traps. Phys. Rev. B 82, 045304 (2010).

    Article  ADS  Google Scholar 

  41. Kreis, T. Holographic Interferometry—Principles and Methods (Akademie, 1996).

    Google Scholar 

Download references

Acknowledgements

We would like to thank M. Wouters and T. C. H Liew for enlightening discussions. We acknowledge support by the Swiss National Science Foundation through the ‘NCCR Quantum Photonics’.

Author information

Authors and Affiliations

Authors

Contributions

G.N. and G.G performed the experiments. Y.L. performed the numerical simulations. F.M-G. grew the sample. G.N, Y.L and B.P. wrote the paper. B.D-P. supervised the project. All authors contributed to numerous discussions and data analysis.

Corresponding author

Correspondence to Gaël Nardin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1566 kb)

Supplementary Movie

Supplementary Movie 1 (MOV 1456 kb)

Supplementary Movie

Supplementary Movie 2 (MOV 2085 kb)

Supplementary Movie

Supplementary Movie 3 (MOV 1188 kb)

Supplementary Movie

Supplementary Movie 4 (MOV 1586 kb)

Supplementary Movie

Supplementary Movie 5 (MOV 1002 kb)

Supplementary Movie

Supplementary Movie 6 (MOV 2151 kb)

Supplementary Movie

Supplementary Movie 7 (MOV 657 kb)

Supplementary Movie

Supplementary Movie 8 (MOV 1834 kb)

Supplementary Movie

Supplementary Movie 9 (MOV 825 kb)

Supplementary Movie

Supplementary Movie 10 (MOV 1846 kb)

Supplementary Movie

Supplementary Movie 11 (MOV 687 kb)

Supplementary Movie

Supplementary Movie 12 (MOV 1589 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nardin, G., Grosso, G., Léger, Y. et al. Hydrodynamic nucleation of quantized vortex pairs in a polariton quantum fluid. Nature Phys 7, 635–641 (2011). https://doi.org/10.1038/nphys1959

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1959

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing