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A simple analytic theory for the statistics of
avalanches in sheared granular materials
Karin A. Dahmen1*, Yehuda Ben-Zion2 and Jonathan T. Uhl3

Slowly sheared granular materials at high packing fractions
deform via slip avalanches with a broad range of sizes. Con-
ventional continuum descriptions1 are not expected to apply to
such highly inhomogeneous, intermittent deformations. Here,
we show that it is possible to analytically compute the dynam-
ics using a simple model that is inherently discrete. This model
predicts quantities such as the avalanche size distribution,
power spectra and temporal avalanche profiles as functions
of the grain number fraction v and the frictional weaken-
ing ε. A dynamical phase diagram emerges with quasi-static
avalanches at high number fractions, and more regular, fluid-
like flow at lower number fractions. The predictions agree with
experiments and simulations for different granular materials,
motivate future experiments and provide a fresh approach to
data analysis. The simplicity of the model reveals quantitative
connections to plasticity and earthquake statistics.

Slip avalanches in slowly sheared granularmaterials, such as sand
and powders, are important for many industrial, engineering, and
geophysical processes. Understanding and predicting the depen-
dence on packing fraction, shear rate, and frictional properties are
the questions addressed here.

In contrast to traditional models based on continuum
mechanics1 or on simulations of each individual grain, we use
an analytical, discrete, coarse-grained approach. We analytically
derive predictions for the statistical properties of slip avalanches at
slow shear rates, where grain inertia is negligible (the ‘quasi-static’
regime). (We do not consider the regimes where grain inertia is
non-negligible, such as granular gases2,3). Previous studies focused
on jamming4,5, force chains3,5–9, stress drops during avalanches
(refs 10–12; P. Yu, T. Shannon, B. Utter & P. R. Behringer,
unpublished data and R. P. Behringer, private communication),
and shear localization in shear bands1,2,13,14. Here, we consider a
simple model for slip avalanche statistics.

Wemodel the simplified system on a coarse-grained scale (larger
than the grain diameter) with a lattice of sites that can either stick
or slip under shear. The lattice is either two- or three-dimensional.
It has linear extent L and N = Ld sites, where d is the dimension
of the lattice. Nocc sites are occupied by grains and N −Nocc sites
are empty (voids). The ‘grain number fraction’, v ≡ Nocc/N is
proportional to the rescaled packing fraction 8/8max, with v = 1
for the densest possible packing 8 = 8max. Initially all sites are
stuck at random initial stresses. We apply a slow shear strain rate by
moving one boundary of the lattice at a very slow parallel velocity
V (see Fig. 1). This leads to a slow increase of shear stress at each
lattice point. A site i slips in the shear direction when its local
shear stress τi exceeds a random static ‘frictional’ failure stress
τs,i (i= 1,...,N ). (The shape of the narrow distribution of the τs,i
does not affect the behaviour on long length scales15.) A failing
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Figure 1 | Analytically computed dynamic ‘mean field phase diagram’.
Left: Granular materials can respond like a solid or more like a fluid under
slow shear, depending on the grain number fraction v multiplied by
c= J/(J+KL)≈ 1, and the frictional weakening ε. The bold line is the phase
boundary cv∗(ε)= 1/(1+ε) separating the solid phase from the fluid-like
phase. At cv= 1 and ε=0 is a critical point (see Table 1). Right: Sketch of
the sheared model lattice with voids (that is, v< 1,8<8max). The ‘linear
system size L’ is the length of the edges of the (square) granular region in
the figure.

site slips during one time step until its stress is relaxed to a local
‘arrest stress’ τa,i < τs,i. It then resticks, with a weakened, dynamic
failure threshold16 of τd,i ≡ τs,i − ε (τs,i − τa,i) > τa,i. Here ε ≥ 0
is a ‘weakening parameter’ that quantifies the difference between
effective static and dynamic ‘friction’ on meso-scales (larger than
the contact level)14,17,18. Weakening is associated with dilation,
the evolution of frictional resistance, and other effects. It could
presumably be tuned by changing the shape and surface of the grains
and the packing fraction. A slipping site can trigger other sites to
slip in the next time step and so on. The slip avalanche stops when
the stresses at all sites are below their current failure thresholds.
All failure thresholds then reheal to their static values τs,i. The
material continues to be slowly sheared until a new avalanche
starts. (Shear rates faster than the rehealing rate may lead to shear
band formation. Here we assume the shear band spans the entire
modelled region12.)

To solve the model we make the following simplifying
assumptions: (1) We study the ‘steady state’, when all memory
of the initial conditions has decayed. (2) It is known that at high
packing fractions granular materials have long force chains that
often span the entire system3,5–9. Long force chains facilitate long
range interactions. We approximate them by infinite-range mean
field (MF) coupling J between the lattice sites (see Supplementary
Information). Mean Field Theory (MFT) effectively averages out
the spatial dependencies. (MFT also correctly describes slips in
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Table 1 | Comparison of MFT results (power law exponents and scaling behaviour) with numerical simulations and experiments.

Power law distribution or other
universal quantity for densely packed
grains (that is near vc= 1 and ε = 0)

Mean field theory exponent Granular experiment9–12,28 Granular simulations14,17,18

Avalanche size distribution D(s)∼ s−κ κ = 1.5 κ = 1.5 –
Avalanche duration distribution∼T−α α= 2 α= 2 or exponential? –
Power spectrum P(ω)∼ω−φ φ= 2 if v≈ 1; φ=0 if v� 1 φ= 1.8−2.5,2 φ= 2 if solid φ=0 if fluid
Source time function 〈V(t,T)〉 averaged
over all avalanches of same duration T.

Symmetric (parabola) Symmetric (parabola) Symmetric: fit by sine function or
parabola (?)

Quasi-periodic event statistics (that is,
stick slip behaviour)

Yes, if ε >0 and v> v∗ Yes, sometimes Yes, in mode switching regime

Mode switching (between power law
and quasi-periodic/stick-slip)

Yes, if ε >0 and v> v∗ Yes, sometimes Yes, in solid regime

Results that are not yet available from experiments or simulations are indicated by a dash. The agreement with published experiments and simulations is remarkably good. The distribution of avalanche
durations T and additional predictions from MFT are discussed in the Supplementary Information, including the following exponent relation: α= (κ− 1)φ+ 1 (refs 23,24). Note that the quantities in the
first four rows of the table refer to avalanches that are small compared with the size of the system. As before, v∗ ≡ 1/((1+ε)c), see Fig. 1.
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Figure 2 | Analytically predicted mean field slip avalanche size
distribution D(s) for decreasing granular number fractions v. Here
v1c=0.99 (black), v2c=0.95 (red), v3c=0.9 (green) and v4c=0.7
(blue), for ε=0, V→0, and c= 1. Note that the power law D(s)∼ s−3/2

extends to the largest sizes for the highest number fraction, that is, as
vc→ 1. The power law agrees with experiments28, see Table 1. The
maximum (‘cutoff’) avalanche size scales as smax∼ (1−vc)−2. The
distributions D(s) are normalized. The avalanche slip size s is in arbitrary
units. (For ε >0,D(s) develops a bump22.)

sheared plastic solids19–21.) (3) Concepts such as anisotropy in
the contact distribution and/or the force-intensity distribution,
as well as anisotropy and rotation of particles are neglected.
(4) Rather than calculating the exact sequence of slips we compute
statistical properties on long length scales, such as the probability
distributions for large avalanche sizes, long avalanche durations
and related measures, as a function of the key model parameters
v and ε. (The dependence on the shear rate V is discussed in the
Supplementary Information.)

The lattice occupation variable, oi, = 1 if site i is occupied and
oi, = 0 if site i is vacant. ui(t ) is the total amount of slip (the
‘displacement discontinuity’) at site i and time t . In MFT, ui(t )
couples to the average cumulative slip,

∑N
m=1(omum(t ))/N . The

total shear stress τi(t ) at site i and at time t is

τi(t )= Joi

[( N∑
m=1

omum(t )/N
)
−ui(t )

]
+KL(Vt−ui(t )) (1)

The bulk acts like a soft spring (with constant KL ∼ 1/L),
coupling the lattice to the boundary15. A failing site i slips by an
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Figure 3 | Illustration of the mean field power spectra at different granular
number fractions v. Here v1 > v2 > v3 > v4 with ε→0 and V→0. Note
that at high number fraction the power spectrum scales as P(ω)∼ω−2 (as
seen in experiments10–12,28) for frequencies ω above a low-frequency cutoff
ωmin. The low-frequency cutoff to the power law region scales as
ωmin (v,ε=0)∼ (1−vc), with c≈ 1. For decreasing number fractions an
increasing range of low frequencies ω<ωmin scales as ω0

= const (white
noise), in agreement with simulations14,17,18.

amount 1ui = 1τioi/(J + KL). The associated local stress drop
is 1τi ≡ (τs,i − τa,i), or, for a weakened cell, 1τi ≡ (τd,i − τa,i).
The coupling J redistributes 1τi to the other sites k 6= i, thereby
increasing their stress by 1τk = oiok |1τi|J/[(J +KL)N ]. We call
c≡ J/(J+KL)≈1−O(1/L)≈1 (refs 15,22). The total redistributed
stress is then (see Supplementary Information)

N∑
k=1,k 6=i

1τk = vc|1τi| ≤ |1τi| (2)

It is smaller than the original stress drop |1τi| by a factor
vc = (Nocc/N )J/(J + KL) ≤ 1. Equation (2) means that voids in
granular materials effectively ‘dissipate’ a fraction 1− vc of the
released stress. Consequently, on average, the avalanches are smaller
when the grains are packed less densely.

For high number fractions (vc ≈ 1,ε≈ 0,V→ 0) MFT predicts
that the distribution D(s) of slip avalanche sizes s≡

∑N
m=1(1um)

decays for large s asD(s)∼ s−κF(s/smax) (ref. 22). TheMFT exponent
κ = 3/2, and the cutoff function F are expected to be the same
for many different materials (‘universal’). F(s/smax)≈ constant for
s� smax and F(s/smax) decays exponentially for s� smax. The cutoff
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Figure 4 | Rescaled average temporal slip rate profile, or temporal mean
field avalanche ‘shape’. The profile is obtained from the average total slip
rate 〈V(t,T)〉 during an avalanche versus time t (the ‘source time function’),
averaged over all avalanches with the same duration T. This function is a
prediction for avalanches in the power law scaling regime s< smax(v,ε,V)
of D(s), for vc close to 1 and ε close to 0 and V→0. In MFT
〈V(t,T)〉∼Ax(1−x) (refs 23–26), where x≡ t/T. A is a nonuniversal
constant (A=4 in the figure), see ref. 26 and the Supplementary
Information. A parabola was recently seen in experiments28.

smax scales with the number fraction v as smax (vc,ε= 0,V → 0)∼
(1−vc)−2 (see Fig. 2).

Similarly, the power spectrum (the absolute square of the
Fourier transform) of the total slip rates V (t )=

∑N
m=1dum(t )/dt

scales in MFT as Pω(ω) ∼ ω−2P1(ω/ωmin) (refs 21,22). Here
P1(ω/ωmin)≈ constant for frequency ω > ωmin(v,ε,V ) and low-
frequency cutoff ωmin(v, ε = 0,V → 0) ∼ (1 − vc) (see Fig. 3).
Further predictions, such as the V - and ε-dependence of D(s)
and Pω(ω), and possible experimental tests are discussed in the
Supplementary Information.

Much can be learned from the average temporal slip rate profile,
〈V (t ,T )〉 (see Fig. 4). It is the total slip rate versus time t during
an avalanche, averaged over all avalanches with same duration
T . In MFT it is a parabola 〈V (t ,T )〉 ∼ t (T − t )/T (refs 23–25).
Aharonov and Sparks fitted a sine function to their simulation
results, but a parabola may fit equally well14,17,18. Many other
scaling predictions can be computed from MFT (refs 15,23,24,
26,27). Table 1 shows good agreement of the MFT results with
experiments and simulations.

In the solid-like regime (v > v∗(ε) with v∗(ε)≡ 1/(c(1+ ε))),
MFT predicts mode switching22: the material flip-flops between
time periods with power law distributed avalanches, and periods
with ‘quasi-periodically’ recurring macroscopically large events
with only small precursors (‘stick-slip’). This behaviour is also seen
in experiments28. The mean durations of these periods depend on
v , ε and details of the system22. As ε→ 0 and vc→ 1 all the time is
spent in the power law phase.

In the fluid-like regime (v < v∗(ε)), MFT predicts only small
avalanches without mode-switching22. This regime resembles the
‘fluid’ phase in experiments and simulations at low number
fractions14,17,18. In the simulations, the power spectrum P(ω)∼ω0

(‘white noise’) in this phase. The analogous quantity in our model
is the power spectrum of the time series of 6mKL(Vt − um(t )),
which scales as P(ω) ∼ ω0 for v � v∗(ε), in agreement with
simulations and experiments. In all parameter regimes the slip
locations are randomly spread throughout the shear band, as seen
in experiments12 and simulations14,17,18.

To conclude, an analytical MFTmodel is developed which yields
a new phase diagram (Fig. 1) for the avalanche statistics of sheared
granular materials. The tuning parameters are the grain number
fraction v , the frictional weakening ε, and the shear rate V . Table 1

demonstrates agreement between results from MFT, experiments,
and numerical simulations.

Mapping to other systems: remarkably, the universal aspects of
avalanches in sheared granular materials at high v (this paper),
dislocation slips in solids19–21, and earthquakes15,16,22,26,27,29 can all
be modelled by variants of the same MFT (refs 15,16,22,27), and
are thus expected to have the same critical exponents. (The variants
describe the undiluted case, that is, v = 1.) A similar connection
between avalanches in granular materials and magnetic domain
walls has been pointed out10,11. Connections between granular
avalanches and earthquakes have been discussed6,16. Observations
and experiments on these systems yield critical exponents with
overlapping error bars. Further studies of the spatial correlations
in finite dimensions will aid in the challenging quest for a simple
unifying theory underlying the dynamics of these different systems.
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