Abstract
At timescales once deemed immeasurably small by Einstein, the random movement of Brownian particles in a liquid is expected to be replaced by ballistic motion. So far, an experimental verification of this prediction has been out of reach due to a lack of instrumentation fast and precise enough to capture this motion. Here we report the observation of the Brownian motion of a single particle in an optical trap with 75 MHz bandwidth and sub-ångström spatial precision and the determination of the particle’s velocity autocorrelation function. Our observation is the first measurement of ballistic Brownian motion of a particle in a liquid. The data are in excellent agreement with theoretical predictions taking into account the inertia of the particle and hydrodynamic memory effects.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Brown, R. A brief account of microscopical observations made in the months of June, July and August, 1827 on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies. Phil. Mag. 4, 161–173 (1828).
Einstein, A. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys. 322, 549–560 (1905).
Frey, E. & Kroy, K. Brownian motion: A paradigm of soft matter and biological physics. Ann. Phys. 14, 20–50 (2005).
Black, F. & Scholes, M. S. The pricing of options and corporate liabilities. J. Political Econ. 81, 637–654 (1973).
Smoluchowski, M. Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen. Ann. Phys. 21, 756–780 (1906).
Einstein, A. Zur Theorie der Brownschen Bewegung. Ann. Phys. 324, 371–381 (1906).
Langevin, P. Sur la théorie du mouvement brownien. C.R. Acad. Sci. Paris 146, 530–533 (1908).
Rahman, A. Correlations in the motion of atoms in liquid argon. Phys. Rev. 136, A404–A411 (1964).
Rahman, A. Liquid structure and self-diffusion. J. Chem. Phys. 45, 2585–2592 (1964).
Alder, B. J. & Wainwright, T. E. Velocity autocorrelations for hard spheres. Phys. Rev. Lett. 18, 988–990 (1967).
Alder, B. J. & Wainwright, T. E. Decay of the velocity autocorrelation function. Phys. Rev. A 1, 18–21 (1970).
Paul, G. L. & Pusey, P. N. Observation of a long-time tail in Brownian motion. J. Phys. A. 14, 3301–3327 (1981).
Weitz, D. A., Pine, D. J., Pusey, P. N. & Tough, R. J. A. Nondiffusive Brownian motion studied by diffusing-wave spectroscopy. Phys. Rev. Lett. 63, 1747–1750 (1989).
Vladimirsky, V. & Terletzky, Y. A. Hydrodynamical theory of translational Brownian motion. Zh. Eksp. Teor. Fiz. 15, 258–263 (1945).
Hinch, E. J. Application of the Langevin equation to fluid suspensions. J. Fluid Mech. 72, 499–511 (1975).
Einstein, A. Theoretische Bemerkungen über die Brownsche Bewegung. Z. Elektrochem. 13, 41–42 (1907).
Blum, J. et al. Measurement of the translational and rotational Brownian motion of individual particles in a rarefied gas. Phys. Rev. Lett. 97, 230601 (2006).
Li, T., Kheifets, S., Medellin, D. & Raizen, M. G. Measurement of the instantaneous velocity of a Brownian particle. Science 328, 1673–1675 (2010).
Uhlenbeck, G. E. & Ornstein, L. S. On the theory of Brownian motion. Phys. Rev. 36, 823–841 (1930).
Lukić, B. et al. Direct observation of nondiffusive motion of a Brownian particle. Phys. Rev. Lett. 95, 160601 (2005).
Jeney, S., Lukić, B., Kraus, J. A., Franosch, T. & Forró, L. Anisotropic memory effects in colloidal diffusion. Phys. Rev. Lett. 100, 240604 (2008).
Zhu, J. X., Durian, D. J., Muller, J., Weitz, D. A. & Pine, D. J. Scaling of transient hydrodynamic interactions in concentrated suspensions. Phys. Rev. Lett. 68, 2559–2562 (1992).
Kao, M. H., Yodh, A. G. & Pine, D. J. Observation of Brownian-motion on the timescale of hydrodynamic interactions. Phys. Rev. Lett. 70, 242–245 (1993).
Henderson, S., Mitchell, S. & Bartlett, P. Propagation of hydrodynamic interactions in colloidal suspensions. Phys. Rev. Lett. 88, 088302 (2002).
Liverpool, T. B. & MacKintosh, F. C. Inertial effects in the response of viscous and viscoelastic fluids. Phys. Rev. Lett. 95, 208303 (2005).
Atakhorrami, M., Koenderink, G. H., Schmidt, C. F. & MacKintosh, F. C. Short-time inertial response of viscoelastic fluids: Observation of vortex propagation. Phys. Rev. Lett. 95, 208302 (2005).
Neuman, K. C. & Block, S. M. Optical trapping. Rev. Sci. Instrum. 75, 2787–2809 (2004).
Chavez, I., Huang, R. X., Henderson, K., Florin, E-L. & Raizen, M. G. Development of a fast position-sensitive laser beam detector. Rev. Sci. Instrum 79, 105104 (2008).
Gittes, F. & Schmidt, C. F. Interference model for back-focal-plane displacement detection in optical tweezers. Opt. Lett. 23, 7–9 (1998).
Pralle, A., Prummer, M., Florin, E.L., Stelzer, E. H. K. & Horber, J. K. H. Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light. Microsc. Res. Tech. 44, 378–386 (1999).
Clercx, H. J. H. & Schram, P. P. J. M. Brownian particles in shear flow and harmonic potentials: A study of long-time tails. Phys. Rev. A 46, 1942–1950 (1992).
Giterman, M. Sh. & Gertsenshtein, M. E. Theory of the Brownian motion and the possibilities of using it for the study of the critical state of a pure substance. Sov. Phys. JETP 23 (4), 722–728 (1966).
Zwanzig, R. & Bixon, M. Compressibility effects in the hydrodynamic theory of Brownian motion. J. Fluid. Mech. 69, 21–25 (1975).
Flyvbjerg, H. & Petersen, H. G. Error estimates on average of correlated data. J. Chem. Phys. 91, 461–466 (1989).
Acknowledgements
This research was supported by NSF grants PHY-0647144 and DBI-0552094. S.J. and B.L. acknowledge support from the NCCR Nanoscale Science. M.G.R. acknowledges support from the Sid W. Richardson Foundation and the R. A. Welch Foundation, grant number F-1258. We thank V. Zyuzin for translating ref. 14.
Author information
Authors and Affiliations
Contributions
R.H. and E-L.F. conceived the experiment. B.L. and S.J. contributed to the planning of the early experiments and provided an early version of the VACF analysis software. I.C., R.H., E-L.F. and M.G.R. developed, built and characterized the fast position detector, and incorporated it into the set-up. R.H. carried out the experiments in part assisted by I.C. R.H. analysed the data. R.H., K.M.T. and E-L.F. interpreted the data and wrote the manuscript. All authors discussed and commented on the final version of the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Huang, R., Chavez, I., Taute, K. et al. Direct observation of the full transition from ballistic to diffusive Brownian motion in a liquid. Nature Phys 7, 576–580 (2011). https://doi.org/10.1038/nphys1953
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphys1953
This article is cited by
-
Complementing two-photon fluorescence detection with backscatter detection to decipher multiparticle dynamics inside a nonlinear laser trap
Scientific Reports (2023)
-
Experimental evolution of active Brownian grains driven by quantum effects in superfluid helium
Scientific Reports (2022)
-
Hydrodynamic Green functions: paradoxes in unsteady Stokes conditions and infinite propagation velocity in incompressible viscous models
Meccanica (2022)
-
Violation of the Second Fluctuation-dissipation Relation and Entropy Production in Nonequilibrium Medium
Journal of Statistical Physics (2022)
-
A Neglected Issue in Testing Particles in the Solution
Chemical Research in Chinese Universities (2022)