Article | Published:

Controlling the quantum stereodynamics of ultracold bimolecular reactions

Nature Physics volume 7, pages 502507 (2011) | Download Citation

Abstract

Molecular collisions in the quantum regime represent a new opportunity to explore chemical reactions. Recently, atom-exchangereactions were observed in a trapped ultracold gas of KRb molecules. In an external electric field, these polar molecules can easily be oriented and the exothermic and barrierless bimolecular reactions, KRb+KRb→K2+Rb2, occur at a rate that rises steeply with increasing dipole moment. Here we demonstrate the suppression of the bimolecular chemical reaction rate by nearly two orders of magnitude when we use an optical lattice trap to confine the fermionic polar molecules in a quasi-two-dimensional, pancake-like geometry, with the dipoles oriented along the tight confinement direction. With the combination of sufficiently tight confinement and Fermi statistics of the molecules, two polar molecules can approach each other only in a ‘side-by-side’ collision under repulsive dipole–dipole interactions. The suppression of chemical reactions is a prerequisite for the realization of new molecule-based quantum systems.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Laser control of chemical reactions. Science 279, 1875–1879 (1998).

  2. 2.

    et al. How reactants polarization can be used to change and unravel chemical reactivity. J. Phys. Chem. A 109, 6200–6217 (2005).

  3. 3.

    , , & Quantum interference as the source of steric asymmetry and parity propensity rules in NO-rare gas inelastic scattering. J. Am. Chem. Soc. 128, 8777–8789 (2006).

  4. 4.

    et al. Quantum-state controlled chemical reactions of ultracold KRb molecules. Science 327, 853–857 (2010).

  5. 5.

    et al. Dipolar collisions of polar molecules in the quantum regime. Nature 464, 1324–1328 (2010).

  6. 6.

    et al. Strongly correlated 2D quantum phases with cold polar molecules: Controlling the shape of the interaction potential. Phys. Rev. Lett. 98, 060404 (2007).

  7. 7.

    et al. Cold polar molecules in two-dimensional traps: Tailoring interactions with external fields for novel quantum phases. Phys. Rev. A 76, 043604 (2007).

  8. 8.

    , , & in Cold Molecules: Theory, Experiment, Applications (eds Krems, R. V., Friedrich, B. & Stwalley, W. C.) 421–469 (CRC, 2009).

  9. 9.

    Theoretical progress in many-body physics with ultracold dipolar gases. Phys. Rep. 464, 71–111 (2008).

  10. 10.

    , , , & The physics of dipolar bosonic quantum gases. Rep. Prog. Phys. 72, 126401 (2009).

  11. 11.

    , & Quantum fluids of self-assembled chains of polar molecules. Phys. Rev. Lett. 97, 180413 (2006).

  12. 12.

    , & Bose–Fermi mixtures of self-assembled filaments of fermionic polar molecules. Phys. Rev. A 81, 013604 (2010).

  13. 13.

    et al. Quantum phases of cold polar molecules in 2D optical lattices. Phys. Rev. Lett. 104, 125301 (2010).

  14. 14.

    et al. Cold heteromolecular dipolar collisions. Preprint at  (2010).

  15. 15.

    Molecules near absolute zero and external field control of atomic and molecular dynamics. Int. Rev. Phys. Chem. 24, 99–118 (2005).

  16. 16.

    et al. Cold and ultracold molecules: Science, technology and applications. New J. Phys. 11, 055049 (2009).

  17. 17.

    et al. Observation of dipole–dipole interaction in a degenerate quantum gas. Phys. Rev. Lett. 95, 150406 (2005).

  18. 18.

    Quasi-two-dimensional dipolar scattering. Phys. Rev. A 81, 042708 (2010).

  19. 19.

    & Electric field suppression of ultracold confined chemical reactions. Phys. Rev. A 81, 060701 (2010).

  20. 20.

    et al. Universal rates for reactive ultracold polar molecules in reduced dimensions. Phys. Rev. Lett. 105, 073202 (2010).

  21. 21.

    , , , & Measurement of p-wave threshold law using evaporatively cooled fermionic atoms. Phys. Rev. Lett. 82, 4208–4211 (1999).

  22. 22.

    et al. Controlling the hyperfine state of rovibronic ground state polar molecules. Phys. Rev. Lett. 104, 030402 (2010).

  23. 23.

    et al. A high-phase-space-density gas of polar molecules. Science 322, 231–235 (2008).

  24. 24.

    , , , & Adiabatic cooling of cesium to 700 nK in an optical lattice. Phys. Rev. Lett. 74, 1542–1545 (1995).

  25. 25.

    , , , & Exploring phase coherence in a 2D lattice of Bose–Einstein condensates. Phys. Rev. Lett. 87, 160405 (2001).

  26. 26.

    & Dynamics of ultracold molecules in confined geometry and electric field. Phys. Rev. A 83, 012705 (2010).

  27. 27.

    & Universal rate constants for reactive collisions of ultracold molecules. Phys. Rev. Lett. 104, 113202 (2010).

  28. 28.

    & Interatomic collisions in a tightly confined Bose gas. Phys. Rev. A 64, 012706 (2001).

  29. 29.

    & Inelastic collisions in an ultracold quasi-two-dimensional gas. Phys. Rev. A 79, 050701(R) (2009).

  30. 30.

    & Strong dependence of ultracold chemical rates on electric dipole moments. Phys. Rev. A 81, 022702 (2010).

  31. 31.

    & Reactions of ultracold alkali metal dimers. Phys. Rev. A 81, 060703 (2010).

  32. 32.

    , & Structure and thermochemistry of K2Rb, KRb2 and K2Rb2. Phys. Rev. A 82, 010502 (2010).

  33. 33.

    & Product-state control of bi-alkali-metal chemical reactions. Phys. Rev. A 82, 042707 (2010).

  34. 34.

    et al. Ultracold polar molecules near quantum degeneracy. Faraday Discuss. 142, 351–359 (2009).

Download references

Acknowledgements

We thank P. Julienne, P. Zoller, G. Pupillo and A. Micheli for stimulating discussions and S. Moses for technical contributions. We gratefully acknowledge financial support for this work from NIST, NSF, AFOSR-MURI, DOE and DARPA.

Author information

Author notes

    • D. Wang
    •  & S. Ospelkaus

    Present addresses: Department of Physics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong (D.W.); Institut für Quantenoptik, Leibniz Universität, 30167 Hannover, Germany (S.O.)

    • M. H. G. de Miranda
    • , A. Chotia
    • , B. Neyenhuis
    •  & D. Wang

    These authors contributed equally to this work

Affiliations

  1. JILA, NIST and University of Colorado, Department of Physics, University of Colorado, Boulder, Colorado 80309-0440, USA

    • M. H. G. de Miranda
    • , A. Chotia
    • , B. Neyenhuis
    • , D. Wang
    • , G. Quéméner
    • , J. L. Bohn
    • , J. Ye
    •  & D. S. Jin
  2. Max Planck Institute of Quantum Optics, 85748 Garching, Germany

    • S. Ospelkaus

Authors

  1. Search for M. H. G. de Miranda in:

  2. Search for A. Chotia in:

  3. Search for B. Neyenhuis in:

  4. Search for D. Wang in:

  5. Search for G. Quéméner in:

  6. Search for S. Ospelkaus in:

  7. Search for J. L. Bohn in:

  8. Search for J. Ye in:

  9. Search for D. S. Jin in:

Contributions

The experimental work and data analysis were carried out by M.H.G.d.M., A.C., B.N., D.W., S.O., J.Y. and D.S.J. Theoretical calculations of the inelastic loss rates in the 2D trap were done by G.Q. and J.L.B.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to J. Ye or D. S. Jin.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphys1939

Further reading