Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Controlling the quantum stereodynamics of ultracold bimolecular reactions

Abstract

Molecular collisions in the quantum regime represent a new opportunity to explore chemical reactions. Recently, atom-exchangereactions were observed in a trapped ultracold gas of KRb molecules. In an external electric field, these polar molecules can easily be oriented and the exothermic and barrierless bimolecular reactions, KRb+KRb→K2+Rb2, occur at a rate that rises steeply with increasing dipole moment. Here we demonstrate the suppression of the bimolecular chemical reaction rate by nearly two orders of magnitude when we use an optical lattice trap to confine the fermionic polar molecules in a quasi-two-dimensional, pancake-like geometry, with the dipoles oriented along the tight confinement direction. With the combination of sufficiently tight confinement and Fermi statistics of the molecules, two polar molecules can approach each other only in a ‘side-by-side’ collision under repulsive dipole–dipole interactions. The suppression of chemical reactions is a prerequisite for the realization of new molecule-based quantum systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Quantized stereodynamics of ultracold chemical reactions in quasi-two dimensions.
Figure 2: Relative population of molecules in the lattice vibrational levels.
Figure 3: Measurements of 2D loss rates and comparison with theory.
Figure 4: Loss rates from three dimensions to two dimensions.

Similar content being viewed by others

References

  1. Zare, R. N. Laser control of chemical reactions. Science 279, 1875–1879 (1998).

    Article  ADS  Google Scholar 

  2. Aldegunde, J. et al. How reactants polarization can be used to change and unravel chemical reactivity. J. Phys. Chem. A 109, 6200–6217 (2005).

    Article  Google Scholar 

  3. Gijsbertsen, A., Linnartz, H., Taatjes, C. A. & Stolte, S. Quantum interference as the source of steric asymmetry and parity propensity rules in NO-rare gas inelastic scattering. J. Am. Chem. Soc. 128, 8777–8789 (2006).

    Article  ADS  Google Scholar 

  4. Ospelkaus, S. et al. Quantum-state controlled chemical reactions of ultracold KRb molecules. Science 327, 853–857 (2010).

    Article  ADS  Google Scholar 

  5. Ni, K-K. et al. Dipolar collisions of polar molecules in the quantum regime. Nature 464, 1324–1328 (2010).

    Article  ADS  Google Scholar 

  6. Büchler, H. P. et al. Strongly correlated 2D quantum phases with cold polar molecules: Controlling the shape of the interaction potential. Phys. Rev. Lett. 98, 060404 (2007).

    Article  ADS  Google Scholar 

  7. Micheli, A. et al. Cold polar molecules in two-dimensional traps: Tailoring interactions with external fields for novel quantum phases. Phys. Rev. A 76, 043604 (2007).

    Article  ADS  Google Scholar 

  8. Pupillo, G., Micheli, A., Büchler, H. P. & Zoller, P. in Cold Molecules: Theory, Experiment, Applications (eds Krems, R. V., Friedrich, B. & Stwalley, W. C.) 421–469 (CRC, 2009).

    Google Scholar 

  9. Baranov, M. Theoretical progress in many-body physics with ultracold dipolar gases. Phys. Rep. 464, 71–111 (2008).

    Article  ADS  Google Scholar 

  10. Lahaye, T., Menotti, C., Santos, L., Lewenstein, M. & Pfau, T. The physics of dipolar bosonic quantum gases. Rep. Prog. Phys. 72, 126401 (2009).

    Article  ADS  Google Scholar 

  11. Wang, D. W., Lukin, M. D. & Demler, E. Quantum fluids of self-assembled chains of polar molecules. Phys. Rev. Lett. 97, 180413 (2006).

    Article  ADS  Google Scholar 

  12. Klawunn, M., Duhme, J. & Santos, L. Bose–Fermi mixtures of self-assembled filaments of fermionic polar molecules. Phys. Rev. A 81, 013604 (2010).

    Article  ADS  Google Scholar 

  13. Capogrosso-Sansone, B. et al. Quantum phases of cold polar molecules in 2D optical lattices. Phys. Rev. Lett. 104, 125301 (2010).

    Article  ADS  Google Scholar 

  14. Sawyer, B. C. et al. Cold heteromolecular dipolar collisions. Preprint at http://arxiv.org/abs/1008.5127 (2010).

  15. Krems, R. V. Molecules near absolute zero and external field control of atomic and molecular dynamics. Int. Rev. Phys. Chem. 24, 99–118 (2005).

    Article  Google Scholar 

  16. Carr, L. D. et al. Cold and ultracold molecules: Science, technology and applications. New J. Phys. 11, 055049 (2009).

    Article  ADS  Google Scholar 

  17. Stuhler, J. et al. Observation of dipole–dipole interaction in a degenerate quantum gas. Phys. Rev. Lett. 95, 150406 (2005).

    Article  ADS  Google Scholar 

  18. Ticknor, C. Quasi-two-dimensional dipolar scattering. Phys. Rev. A 81, 042708 (2010).

    Article  ADS  Google Scholar 

  19. Quéméner, G. & Bohn, J. L. Electric field suppression of ultracold confined chemical reactions. Phys. Rev. A 81, 060701 (2010).

    Article  ADS  Google Scholar 

  20. Micheli, A. et al. Universal rates for reactive ultracold polar molecules in reduced dimensions. Phys. Rev. Lett. 105, 073202 (2010).

    Article  ADS  Google Scholar 

  21. DeMarco, B., Bohn, J. L., Burke, J. P. Jr, Holland, M. & Jin, D. S. Measurement of p-wave threshold law using evaporatively cooled fermionic atoms. Phys. Rev. Lett. 82, 4208–4211 (1999).

    Article  ADS  Google Scholar 

  22. Ospelkaus, S. et al. Controlling the hyperfine state of rovibronic ground state polar molecules. Phys. Rev. Lett. 104, 030402 (2010).

    Article  ADS  Google Scholar 

  23. Ni, K-K. et al. A high-phase-space-density gas of polar molecules. Science 322, 231–235 (2008).

    Article  ADS  Google Scholar 

  24. Kastberg, A., Phillips, W. D., Rolston, S. L., Spreeuw, R. J. C. & Jessen, P. S. Adiabatic cooling of cesium to 700 nK in an optical lattice. Phys. Rev. Lett. 74, 1542–1545 (1995).

    Article  ADS  Google Scholar 

  25. Greiner, M., Bloch, I., Mandel, O., Hänsch, T. W. & Esslinger, T. Exploring phase coherence in a 2D lattice of Bose–Einstein condensates. Phys. Rev. Lett. 87, 160405 (2001).

    Article  ADS  Google Scholar 

  26. Quéméner, G. & Bohn, J. L. Dynamics of ultracold molecules in confined geometry and electric field. Phys. Rev. A 83, 012705 (2010).

    Article  ADS  Google Scholar 

  27. Idziaszek, Z. & Julienne, P. S. Universal rate constants for reactive collisions of ultracold molecules. Phys. Rev. Lett. 104, 113202 (2010).

    Article  ADS  Google Scholar 

  28. Petrov, D. S. & Shlyapnikov, G. V. Interatomic collisions in a tightly confined Bose gas. Phys. Rev. A 64, 012706 (2001).

    Article  ADS  Google Scholar 

  29. Li, Z. & Krems, R. V. Inelastic collisions in an ultracold quasi-two-dimensional gas. Phys. Rev. A 79, 050701(R) (2009).

    Article  ADS  Google Scholar 

  30. Quéméner, G. & Bohn, J. L. Strong dependence of ultracold chemical rates on electric dipole moments. Phys. Rev. A 81, 022702 (2010).

    Article  ADS  Google Scholar 

  31. Zuchowski, P. S. & Hutson, J. M. Reactions of ultracold alkali metal dimers. Phys. Rev. A 81, 060703 (2010).

    Article  ADS  Google Scholar 

  32. Byrd, J. N., Montgomery, J. A. Jr & Côté, R. Structure and thermochemistry of K2Rb, KRb2 and K2Rb2 . Phys. Rev. A 82, 010502 (2010).

    Article  ADS  Google Scholar 

  33. Meyer, E. R. & Bohn, J. L. Product-state control of bi-alkali-metal chemical reactions. Phys. Rev. A 82, 042707 (2010).

    Article  ADS  Google Scholar 

  34. Ospelkaus, S. et al. Ultracold polar molecules near quantum degeneracy. Faraday Discuss. 142, 351–359 (2009).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank P. Julienne, P. Zoller, G. Pupillo and A. Micheli for stimulating discussions and S. Moses for technical contributions. We gratefully acknowledge financial support for this work from NIST, NSF, AFOSR-MURI, DOE and DARPA.

Author information

Authors and Affiliations

Authors

Contributions

The experimental work and data analysis were carried out by M.H.G.d.M., A.C., B.N., D.W., S.O., J.Y. and D.S.J. Theoretical calculations of the inelastic loss rates in the 2D trap were done by G.Q. and J.L.B.

Corresponding authors

Correspondence to J. Ye or D. S. Jin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Miranda, M., Chotia, A., Neyenhuis, B. et al. Controlling the quantum stereodynamics of ultracold bimolecular reactions. Nature Phys 7, 502–507 (2011). https://doi.org/10.1038/nphys1939

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1939

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing