Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Current quantization in an optically driven electron pump based on self-assembled quantum dots

Abstract

The electronic structure of self-assembled semiconductor quantum dots consists of discrete atom-like states that can be populated with a well-defined number of electrons. This property can be used to fabricate a d.c. current standard that enables the unit of ampere to be independently defined. Here we report an optically pumped current source based on self-assembled InAs/GaAs quantum dots. The accuracy obtained so far is 10−1 and is limited by the uncertainty in the number of dots. At 10 K the device generates a current difference of 2.39 nA at a frequency of 1 kHz. The accuracy could be improved by site-selective growth techniques where the number of dots is fixed by pre-patterning. The results are promising for applications in electrical metrology, where a current standard is needed to close the so-called quantum metrological triangle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Principle of operation of the device.
Figure 2: Photocurrent spectrum.
Figure 3: Filling time measurements.
Figure 4: Optically pumped current.
Figure 5: Quantified current.
Figure 6: Frequency-dependence measurements.

Similar content being viewed by others

References

  1. Piquemal, F. et al. Fundamental electrical standards and the quantum metrological triangle. C. R. Physique 5, 857–879 (2004).

    Article  ADS  Google Scholar 

  2. Josephson, B. D. Possible new effects in superconductive tunnelling. Phys. Lett. 1, 251–253 (1962).

    Article  ADS  Google Scholar 

  3. von Klitzing, K., Dorda, G. & Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494–497 (1980).

    Article  ADS  Google Scholar 

  4. Flowers, J. The route to atomic and quantum standards. Science 306, 1324–1330 (2004).

    Article  ADS  Google Scholar 

  5. Pothier, H., Lafarge, P., Esteve, D., Urbina, C. & Devoret, M. H. Passing electrons one by one: Is a 10−8 accuracy achievable? IEEE Trans. Instrum. Meas. 42, 324–330 (2004).

    Article  Google Scholar 

  6. Geerligs, L. J. et al. Frequency-locked turnstile device for single electrons. Phys. Rev. Lett. 64, 2691–2694 (1990).

    Article  ADS  Google Scholar 

  7. Keller, M. W., Martinis, J. M., Zimmerman, N. M. & Steinbach, A. H. Accuracy of electron counting using a 7-junction electron pump. Appl. Phys. Lett. 69, 1804–1806 (1996).

    Article  ADS  Google Scholar 

  8. Keller, M. W., Eichenberg, A. L., Martinis, J. M. & Zimmerman, N. M. A capacitance standard based on counting electrons. Science 285, 1706–1709 (1999).

    Article  Google Scholar 

  9. Kautz, R. L., Keller, M. K. & Martinis, J. M. Leakage and counting errors in a seven junction electron pump. Phys. Rev. B 60, 8199–8212 (1999).

    Article  ADS  Google Scholar 

  10. Vartiainen, J. J., Möttönen, M., Pekola, J. P. & Kemppinen, A. Nanoampere pumping of Cooper pairs. Appl. Phys. Lett. 90, 082102 (2007).

    Article  ADS  Google Scholar 

  11. Shilton, J. M. et al. High-frequency single-electron transport in a quasi-one-dimensional GaAs channel induced by surface acoustic waves. J. Phys.: Condens. Matter 8, L531–L539 (1996).

    Google Scholar 

  12. Pekola, J. P. et al. Hybrid single-electron transistor as a source of quantized electric current. Nature Phys. 4, 120–124 (2008).

    Article  ADS  Google Scholar 

  13. Maisi, V. F, Pashkin, Y. A, Kafanov, S., Tsai, J. S. & Pekola, J. P. Parallel pumping of electrons. New J. Phys. 11, 113057 (2009).

    Article  ADS  Google Scholar 

  14. Kemppinen, A. et al. Experimental investigation of hybrid single-electron turnstiles with high charging energy. Appl. Phys. Lett. 94, 172108 (2009).

    Article  ADS  Google Scholar 

  15. Kouwenhoven, L. P., Johnson, A. T., van der Vaart, N. C., Harmans, C. J. P. M. & Foxon, C. T. Quantized current in a quantum-dot turnstile using oscillating tunnel barriers. Phys. Rev. Lett. 67, 1626–1629 (1991).

    Article  ADS  Google Scholar 

  16. Blumenthal, M. D. et al. Gigahertz quantized charge pumping. Nature Phys. 3, 343–347 (2007).

    Article  ADS  Google Scholar 

  17. Fujiwara, A., Nishiguchi, K. & Ono, Y. Nanoampere charge pumping by single-electron ratchet using silicon nanowire metal–oxide-semiconductor field-effect transistor. Appl. Phys. Lett. 92, 042102 (2008).

    Article  ADS  Google Scholar 

  18. Jensen, H. D. & Martinis, J. M. Accuracy of the electron pump. Phys. Rev. B 46, 13407–13427 (1992).

    Article  ADS  Google Scholar 

  19. Zimmerman, N. M., Hourdakis, E., Ono, Y., Fujiwara, A. & Takahashi, Y. Error mechanisms and rates in tunable-barrier single-electron turnstiles and charge-coupled devices. J. Appl. Phys. 96, 5254–5266 (2004).

    Article  ADS  Google Scholar 

  20. Kashcheyevs, V. & Kaestner, B. Universal decay cascade model dynamic quantum dot initialization. Phys. Rev. Lett. 104, 186805 (2010).

    Article  ADS  Google Scholar 

  21. Giblin, S. P. et al. An accurate high-speed single-electron quantum dot pump. New J. Phys. 12, 073013 (2010).

    Article  ADS  Google Scholar 

  22. Imamoglu, A. & Yamamoto, Y. Turnstile device for heralded single photons: Coulomb blockade of electron and hole tunnelling in quantum confined pin heterojunctions. Phys. Rev. Lett. 72, 210–213 (1994).

    Article  ADS  Google Scholar 

  23. Zrenner, A. et al. Coherent properties of a two-level system based on a quantum-dot photodiode. Nature 418, 612–614 (2002).

    Article  ADS  Google Scholar 

  24. Petroff, P. M., Lorke, A. & Imamoglu, A. Epitaxially self-assembled quantum dots. Phys. Today 54, 46–52 (May, 2001).

    Article  ADS  Google Scholar 

  25. Liu, H. Y. & Hopkinson, M. Tuning the structural and optical properties of 1.3-μm InAs/GaAs quantum dots by a combined InAlAs and GaAs strained buffer layer. Appl. Phys. Lett. 82, 3644–3646 (2003).

    Article  ADS  Google Scholar 

  26. Nevou, L., Liverini, V., Castellano, F., Bismuto, A. & Faist, J. Asymmetric heterostructure for photovoltaic InAs quantum dot infrared photodetector. Appl. Phys. Lett. 97, 023505 (2010).

    Article  ADS  Google Scholar 

  27. Paschotta, R. et al. Relative timing jitter measurements with an indirect phase comparison method. Appl. Phys. B 80, 185–192 (2005).

    Article  ADS  Google Scholar 

  28. Diddams, S. A., Bergquist, J. C., Jefferts, S. R. & Oates, C. W. Standards of time and frequency at the outset of the 21st century. Science 306, 1318–1324 (2004).

    Article  ADS  Google Scholar 

  29. Mohan, A. et al. Record-low inhomogeneous broadening of site-controlled quantum dots for nanophotonics. Small 6, 1268–1272 (2010).

    Article  ADS  Google Scholar 

  30. Aivaliotis, P. et al. Two photon absorption in quantum dot-in-a-well infrared photodetectors. Appl. Phys. Lett. 92, 023501 (2008).

    Article  ADS  Google Scholar 

  31. Vodopyanov, K. L., Chazapis, V., Phillips, C. C., Sung, B. & Harris, J. S. Intersubband absorption saturation study of narrow III–V multiple quantum wells in the λ=2.8–9 μm spectral range. Semicond. Sci. Technol. 12, 708–714 (1997).

    Article  ADS  Google Scholar 

  32. Nishi, K., Saito, H., Sugou, S. & Lee, J. A narrow photoluminescence linewidth of 21 meV at 1.35 μm from strain-reduced InAs quantum dots covered by In0.2Ga0.8As grown on GaAs substrates. Appl. Phys. Lett. 74, 1111–1113 (1999).

    Article  ADS  Google Scholar 

  33. Tchernycheva, M. et al. Intraband absorption of doped GaN/AlN quantum dots at telecommunication wavelengths. Appl. Phys. Lett. 87, 101912 (2005).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Swiss National Foundation under the NCCR project Quantum Photonics. The authors would like to thank Tobias Gresch for providing the QCL used for the pump–probe measurement.

Author information

Authors and Affiliations

Authors

Contributions

L.N. carried out the measurements, did the data interpretation and wrote the manuscript. V.L. grew the samples by molecular beam epitaxy, processed the devices, followed the study and wrote the manuscript. F.C. contributed to the data interpretation, modelling and wrote the manuscript. A.B., P.F. and H.S. helped with the experiment. F.G. and E.M. provided the TEM pictures. The idea came from J.F. and all work was done under his supervision.

Corresponding authors

Correspondence to L. Nevou or J. Faist.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nevou, L., Liverini, V., Friedli, P. et al. Current quantization in an optically driven electron pump based on self-assembled quantum dots. Nature Phys 7, 423–427 (2011). https://doi.org/10.1038/nphys1918

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1918

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing